Превышение выходного тока в источниках питания свидетельствует об увеличении потребляемой мощности в устройстве нагрузки. Иногда потребляемый ток в нагрузке (из-за неисправности соединений или самого устройства нагрузки) может увеличиться вплоть до значения тока короткого замыкания (к/з), что неминуемо приведет к аварии (если источник питания не снабжен узлом защиты от перегрузки).
Последствия перегрузки могут оказаться более существенными и непоправимыми, если использовать источник питания без узла защиты (как сегодня часто делают радиолюбители, изготавливая простые источники и покупая недорогие адаптеры) — увеличится энергопотребление, выйдет из строя сетевой трансформатор, возможно возгорание отдельных элементов и неприятный запах.
Для того чтобы вовремя заметить выход источника питания в «заштатный» режим, устанавливают простые индикаторы перегрузки. Простые — потому, что они, как правило, содержат всего несколько элементов, недорогих и доступных, а установить эти индикаторы можно универсально практически в любой самодельный или промышленный источник питания.
Самая простая электронная схема индикатора токовой перегрузки показана на рис. 3.4.
Работа ее элементов основана на том, что последовательно с нагрузкой в выходной цепи источника питания включают ограничивающий резистор малого сопротивления (R3 на схеме). Данный узел можно применять универсально в источниках питания и стабилизаторах с разным выходным напряжение (испытано в условиях выходного напряжения 5—20 В). Однако значения и номиналы элементов, указанных на схеме рис. 3.4, подобраны для источника питания с выходным напряжением 12 В. Соответственно, для того чтобы расширить диапазон источников питания для данной конструкции, в выходном каскаде которых будет эффективно работать предлагаемый узел индикации, потребуется изменить параметры элементов R1—R3, VD1, VD2.
Пока перегрузки нет, источник питания и узел нагрузки работают в штатном режиме, через R3 протекает допустимый ток и падение напряжения на резисторе невелико (менее 1 В). Также невелико в этом случае и падение напряжения на диодах VD1, VD2, при этом светодиод HL1 едва светится.
При увеличении тока потребления в устройстве нагрузки или коротком замыкании между точками А и Б ток в цепи возрастает, падение напряжения на резисторе R3 может достигнуть максимального значения (выходного напряжения источника питания), вследствие чего светодиод HL1 загорится (будет мигать) в полную силу. Для наглядного эффекта в схеме применен мигающий светодиод L36B. Вместо указанного светодиода можно применить аналогичные по электрическим характеристикам приборы, например, L56B, L456B (повышенной яркости), L816BRC-B, L769BGR, TLBR5410 или подобные им.
Мощность, рассеиваемая на резисторе R3 (при токе к/з) более 5 Вт, поэтому этот резистор изготавливается самостоятельно из медной проволоки типа ПЭЛ-1 (ПЭЛ-2) диаметром 0,8 мм.
Ее берут из ненужного трансформатора. На каркас из канцелярского карандаша наматывают 8 витков этого провода, концы ее облуживают, затем каркас вынимают. Проволочный резистор R3 готов.
3.4.1. О деталях
Все постоянные резисторы типа МЛТ-0,25 или аналогичные.
Вместо диодов VD1, VD2 можно установить КД503, КД509, КД521 с любым буквенным индексом. Эти диоды защищают светодиод в режиме перегрузки (гасят излишнее напряжение).
К сожалению, на практике нет возможности постоянно визуально следить за состоянием индикаторного светодиода в источнике питания, поэтому разумно дополнить схему электронным узлом звукового сопровождения. Такая схема представлена на рис. 3.5.
Как видно из схемы, она работает по тому же принципу, но в отличие от предыдущей, это устройство более чувствительно и характер его работы обусловлен открыванием транзистора VT1, при установлении в его базе потенциала более 0,3 В. На транзисторе VT1 реализован усилитель тока. Транзистор выбран германиевым. Из старых запасов радиолюбителя. Его можно заменить на аналогичные по электрическим характеристикам приборы: МП16, МП39—МП42 с любым буквенным индексом. В крайнем случае, можно установить кремниевый транзистор КТ 361 или КТ3107 с любым буквенным индексом, однако тогда порог включения индикации будет иным.
Порог включения транзистора VT1 зависит от сопротивления резисторов R1 и R2 и в данной схеме при напряжении источника питания 12,5 В индикация включится при токе нагрузки, превышающем 400 мА.
В коллекторной цепи транзистора включен мигающий светодиод и капсюль со встроенным генератором ЗЧ НА1. Когда на резисторе R1 падение напряжения достигнет 0,5…0,6 В, транзистор VT1 откроется, на светодиод HL1 и капсюль НА1 поступит напряжение питания. Поскольку капсюль для светодиода является активным элементом, ограничивающим ток, режим работы светодиода в норме. Благодаря применению мигающего светодиода капсюль также будет звучать прерывисто — звук будет слышен во время паузы между вспышками светодиода.
В этой схеме можно достичь еще более интересный звуковой эффект, если вместо капсюля НА1 включить прибор KPI-4332-12, который имеет встроенный генератор с прерыванием. Таким образом звук в случае перегрузки будет напоминать сирену (этому способствует сочетание прерываний вспышек светодиода и внутренних прерываний капсюля НА1). Такой звук достаточно громкий (слышно в соседнем помещении при среднем уровне шума), обязательно будет привлекать внимание людей.
Еще одна схема индикаторов перегрузки представлена на рис. 3.6.
В тех конструкциях, где установлен плавкий (или иной, например, самовосстанавливающийся) предохранитель, часто требуется визуально контролировать их работу. Простая разработка, схема которой показана на рис. 3.6, позволяет это сделать. Здесь применен двухцветный светодиод с общим катодом и соответственно тремя выводами. Кто на практике испытывал эти диоды с одним общим выводом, знают, что они функционируют несколько иначе, чем ожидается. Шаблон мышления в том, что казалось бы, зеленый и красный цвета будут появляться у светодиода в общем корпусе соответственно при приложении (в нужной полярности) напряжения к соответственным выводам R или G. Однако, это не совсем так.
Пока предохранитель FU1 исправен, к обоим анодам светодиода HL1 приложено напряжение. Порог свечения корректируется сопротивлением резистора R1. Если предохранитель обрывает цепь питания нагрузки, то зеленый светодиод гаснет, а красный остается светить (если напряжения питания совсем не пропало). Поскольку допустимое обратное напряжение для светодиодов мало и ограничено, то для указанной конструкции в схему введены диоды с разными электрическими характеристиками VD1—VD4. То, что к зеленому светодиоду последовательно включен только один диод, а к красному три, объясняется особенностями светодиода АЛС331А, замеченными на практике. При экспериментах оказалось, что порог напряжения включения красного светодиода меньше, чем у зеленого. Чтобы уравновесить эту разницу (заметную только на практике), количество диодов неодинаково.
При перегорании предохранителя к зеленому светодиоду (G) прикладывается напряжение в обратной полярности.
Номиналы элементов в схеме даны для контроля напряжения в цепи 12 В. Вместо светодиода АЛС331А допустимо применять другие аналогичные приборы, например, КИПД18В-М, L239EGW.
3.5. Универсальные акустические датчики-выключатели
Среди радиолюбительских конструкций встречаются простые устройства, собранные по разным схемам. Их отличает набор элементов, уровень усиления и чувствительность к акустическим колебаниям. На основе чувствительных акустических устройств — датчиков, управляющих различными устройствами нагрузки, можно создавать автоматические устройства. Большое (определяющее) значение в этом случае имеет чувствительность и возможность ее регулировки. Одним из таких устройств, реагирующим на малейший шум и даже ветерок (об этом далее), является рассматриваемое устройство чувствительного акустического датчика с задержкой выключения.
Электрическая схема устройства представлена на рис. 3.7.
Усилитель слабых звуковых сигналов выполнен на высокочувствительном микрофонном усилителе DA1. Чувствительность микросхемы операционного усилителя (далее ОУ) такова, что он воспринимает входной сигнал амплитудой 1 мВ. Корректировкой сопротивления резистора R7 чувствительность усилителя можно изменять в широких пределах. Суммарный коэффициент усиления при указанных на схеме номиналах элементов составляет более 3000 и может быть еще более увеличен с помощью увеличения сопротивления резистора R7 и емкости конденсаторов С5 до 1000 пФ. Эти конденсаторы компенсационной цепочки введены в схему для устранения возможного самовозбуждения на высоких частотах усилителя при максимальном режиме усиления. Для увеличения общего коэффициента усиления также рекомендуется увеличить емкость разделительных конденсаторов С6 и С8 до 2 мкФ и 50 мкФ соответственно.
Соответственно при уменьшении сопротивления резистора R7 до 50 кОм (в 10 раз) чувствительность ОУ уменьшится так, что устройство будет реагировать только на голос человека (хлопок в ладоши или другой громкий звук) на расстоянии до 1 м от микрофона ВМ1.
Усиленный сигнал переменного напряжения с выхода ОУ DA1.1 через разделительный конденсатор C8 поступает на выпрямитель, реализованный на диодах VD1 и VD2. Выпрямленное напряжение сглаживается оксидным конденсатором С9 и шунтируется резистором R9. Цепь С9R9 одновременно является узлом задержки. Когда в точке А (на выходе схемы) появится высокий уровень напряжения (амплитудой 3,6…3,8 В), заряжающий конденсатор С9, этот уровень будет присутствовать в точке А не менее чем 4 мин. Высокий уровень в точке А является управляющим по отношению к исполнительному узлу (на схеме не показан), соответственно управляющему любой электронной нагрузкой, например, лампой накаливания в сети 220 В, установленной на лестничной клетке. В этом случае устройство будет полезно, как автомат-включатель освещения при приближении жильцов к микрофону ВМ1. Когда вблизи электретного микрофона наступит тишина, по истечении выдержки 4 мин, лампа освещения автоматически погаснет до следующего акустического воздействия на микрофон. Если шум вокруг ВМ1 сохранится во время отсчета времени после первоначального звукового воздействия, то выдержка времени соответственно увеличится и лампа освещения будет гореть до тех пор, пока шум не прекратится плюс еще 4 мин.
Если задержка выключения не нужна, то ее можно отключить. Для этого управляющий сигнал берут напрямую с вывода 7 микросхемы DA1.
Есть и еще одна интересная особенность усилителя сигналов на микросхеме DA1. Если изменить (увеличить емкость) номиналы элементов в цепи обратной связи (конденсаторы С5, С7 и разделительные конденсаторы С6, С8 — об этом написано выше), чувствительность устройства оказывается такова, что управляющий выходной сигнал появится на выводе 7 элемента DA1.2 не после звукового воздействия на микрофон, а даже при слабом ветерке, потоке воздуха, направленного на микрофон ВМ1 с расстояния 0,5–1 м. Для получения такого эффекта потребуется полностью изолировать помещение от посторонних звуков (что в больших городах сделать в бытовых условиях средней квартиры почти невозможно, ибо уровень шума с улицы превышает все мыслимые пределы). Этот авторский эксперимент проводился ночью, поэтому в связи с вышеизложенным можно рекомендовать данную разработку тем радиолюбителям, кто сможет найти для нее другое рациональное применение (взяв за основу), например, для создания шумомера — устройства фиксирующего, измеряющего уровень шума и индицирующего превышение этого уровня. В больших городах, а также в производственных помещениях такой прибор сегодня оказывается весьма актуальным, ибо позволяет сберечь людям здоровье, нервы и, как следствие, продлить жизнь.
Кроме того, рекомендованную на рис. 3.7 электронную схему можно с успехом применить как составную часть других радиолюбительских конструкций, описанных в этой книге, в качестве высокочувствительного акустического узла.
3.5.1. О деталях
Самым дорогим элементом в предлагаемой конструкции является микросхема DA1. Ее можно заменить близким по электрическим характеристикам ОУ TL072 или TL082. У них идентичное расположение выводов. Вторым по значимости в устройстве является пассивный электретный микрофон ВМ1. В отличие от активного микрофона, пассивный микрофон не имеет внутреннего усилителя и отдельного питания. Микрофон СZN-15E широко распространен в продаже и телефонных аппаратах различных марок и стоит недорого. Вместо него с не меньшим успехом можно применить отечественные электретные микрофоны МКЭ-332, МКЭ-333, МКЭ387, МКЭ-389. Оксидный конденсатор С2, например, типа К50-24 или К50-29 сглаживает пульсации напряжения источника питания. Остальные оксидные конденсаторы могут быть К50-29, К50-35. В качестве С9 надо использовать конденсатор с малым током утечки, например, К50-35, К53-1, К53-10 или аналогичные им.
Неполярные конденсаторы типа К10-17, КМ6 или аналогичные. Все постоянные резисторы типа МЛТ-0,125, МЛТ-0,25, МF-25 или аналогичные.
Конденсатор С9 своей емкостью определяет время задержки выключения оконечного узла.
Оконечный (исполнительный) узел подбирается таким, чтобы он реагировал на положительный фронт импульса в точке А. Примеров таких узлов в этой книге рассмотрено много.
Налаживание устройства заключается в подборе уровня чувствительности ОУ (корректировкой сопротивления резистора R7). Для этого во время настройки этот резистор лучше заменить подстроечным, например, СП3-29В — с линейной характеристикой изменения сопротивления, а затем, когда оптимальный уровень будет установлен, выпаять резистор из схемы, замерить омметром его сопротивление и установить вместо него постоянный соответствующего сопротивления.
Источник питания для устройства с понижающим трансформатором, стабилизированный. Напряжение для питания схемы в диапазоне 5–8 В.
3.5.2. Альтернативное устройство усилителя слабых сигналов
Аналогичным по функциональности является устройство акустического датчика, электрическая схема которого представлена на рис. 3.8.
На рис. 3.8 представлено устройство усилителя слабых сигналов. Устройство реализовано на двух однотипных кремниевых транзисторах n-p-n проводимости, обладающих высоким коэффициентом усиления (80—100 по току). При звуковом воздействии на микрофон ВМ1 переменный сигнал поступает в базу транзистора VT1 и усиливается им. С коллектора транзистора VT2 снимается выходной сигнал, управляющий периферийными или исполнительными устройствами отрицательным фронтом.
Оксидный конденсатор С1 сглаживает пульсации напряжения источника питания. Резистор обратной связи R4 предохраняет усилитель слабых сигналов от самовозбуждения.
Выходной ток транзистора VT2 позволяет управлять маломощным электромагнитным реле с рабочим напряжением 5 В и током срабатывания 15…20 мА.
Расширенная схема акустического датчика показана на рис. 3.9. В отличие от предыдущей схемы она отличается дополнительными возможностями регулировки усиления и инверсии выходного сигнала.
3.5.3. Расширенная схема акустического датчика
Регулировка усиления слабых сигналов с микрофона ВМ1 осуществляется переменным резистором R6 (см. рис. 3.9). Чем меньше сопротивление данного резистора, тем больше усиление транзисторного каскада на транзисторе VT1. При длительной практике эксплуатации рекомендуемого узла удалось установить, что при сопротивлении резистора R6 равным нулю возможно самовозбуждение каскада. Чтобы его избежать, последовательно с R6 включают еще один ограничительный резистор сопротивлением 100–200 Ом.
На схеме показаны два выхода, с которых снимается управляющий сигнал для последующих схем и оконечных электронных узлов. С точки «ВЫХОД 1» снимают управляющий сигнал с отрицательным фронтом (который появляется при звуковом воздействии на микрофон ВМ1). С точки «ВЫ1ХОД 2» соответственно инверсный сигнал (с положительным фронтом).
Благодаря применению в качестве оконечного токового усилителя полевого транзистора КП501А (VT2) устройство снижает потребление тока (относительно предыдущей схемы), а также имеет возможность управления более мощной нагрузкой, например, исполнительным реле с током включения до 200 мА. Этот транзистор можно заменить на КП501 с любым буквенным индексом, а также на более мощный полевой транзистор соответствующей конфигурации.
Эти простые конструкции в налаживании не нуждаются. Все они испытаны при питании от одного и того же стабилизированного источника с напряжением 6 В. Потребляемый ток конструкции (без учета тока потребления реле) не превышает 15 мА.
Все элементы конструкций, о которых не сказано особо, надлежит использовать тех же типов, которые описаны для схемы на рис. 3.7.