Энергия и жизнь — страница 34 из 37

Первым (и очень изящным!) способом приспособительного реагирования генотипа через фенотип на условия окружающей среды можно назвать способ плазмидной (вирусной) передачи генов на уровне прокариот. Его можно считать в определенном смысле универсальным: он работает и по вертикали (передача от предков к потомкам), и по горизонтали (в пределах одного поколения). Им могут быть охвачены как ближайшие родственники, так и отдаленные соседи из других семейств. Можно даже утверждать, что этот путь передачи генетической информации от клетки к клетке способен осуществляться не только «вверх» по вертикали, по и «вниз», т. е. если информация не нужна, то она не передается.

И здесь не надо придумывать ничего экстраординарного — здесь везде работает естественный отбор, который достаточно строго подчиняется действию энергетических принципов. А плазмиды являются основным поставщиком разнообразия и создают материал для работы естественного отбора. Они представляют собой внехромосомные кольцевые молекулы ДНК, способные автономно реплицироваться (воспроизводить себя) и передаваться в дочерние бактерии при делении клеток. Для многих плазмид (но не для всех) характерна способность самостоятельно переходить из одних бактериальных клеток в другие, от донора к реципиенту. Это свойство называется транспортабельностью, или трансмиссивностью. Плазмиды могут ассоциироваться друг с другом, и тогда нетранспортабельная плазмида способна «переехать» в другую клетку на плазмиде-перепосчике.

Плазмиды могут находиться в бактерии как в автономном состоянии, так и интегрироваться с хромосомой. При выходе из хромосомы (дезинтеграции) они способны «прихватить» с собой часть хромосомных генов.

Плазмиды, принося новые блоки генов в клетку, позволяют ей осваивать новые экологические ниши и успешно развиваться при ухудшении условий среды, например при действии внешних ядов — ингибиторов. Само обнаружение плазмид в 50-е годы нашего века как раз и было связано с неожиданной для человека быстро возникшей устойчивостью патогенных бактерии к антибиотикам. Практически мгновенное распространение лекарственной устойчивости среди бактерий, да еще множественные ее формы (т.е. устойчивость к нескольким антибиотикам), буквально посеяли среди химиотерапевтов панику, которая в наше время сменилась тихой растерянностью. Пока, вплоть до настоящего времени мы пытаемся побеждать очень дорогой ценой — создаем все новые и новые антибиотики. Это не лучший путь, и его недостатки мы обсуждали на страницах этой книги. Сейчас лишь подчеркнем, что С+Э подход позволяет использовать общебиологические законы для разработки стратегии более выгодной (менее энергоемкой) борьбы с лекарственной устойчивостью патогенных бактерий. Она основывается на использовании стабилизирующей формы естественного отбора: R-плазмиды резко уменьшаются в численности в популяциях бактерий, если они не нужны. Например, антибиотик карбеницилин оказалось возможным вновь использовать через два года, так как после прекращения его применения резко упала частота появления (выделения) резистентных к нему штаммов синегнойной палочки [Lowbury, 1973; цит.по.: Гольдфарб, 1980].

Другой способ перегруппировки генетического материала и его обновления связан с наличием в клетках прокариот (и эукариот) мигрирующих генетических элементов, способных к самостоятельному перемещению в пределах клеточного генома. Называют их по-разному: подвижные, мобильные, прыгающие гены и пр. Эти элементы могут включаться как в главные хромосомные репликоны, так и в дополнительные (плазмиды, эписомы фаги), вызывая их мутации, а также могут осуществлять обмен генов между различными генетическими системами. Это приводит к резкому увеличению рекомбинационных возможностей генотипа клеток.

Что касается эукариотных клеток, то они имеют мигрирующие генетические элементы как с малым (100–300) числом пар нуклеотидов, так и с большим числом повторов (до 10000 оснований). В последнее время они обнаружены у большинства таксонов: от одноклеточных грибов-дрожжей до человека. Например, в геномах млекопитающих широко распространены так называемые вездесущие короткие повторы. Они на самом деле короткие — до 100–300 нуклеотидых пар. Обнаружены они в геномах мыши и человека. Поскольку становится очевидным, что подвижные генетические элементы не экзотика, а обыденное явление, что хромосомы буквально «пестрят» этими фрагментами, то естественно возникает вопрос: а не слишком ли они «дороги» для клетки? Иногда на мобильные гены приходится по 1/4 от всей синтезируемой клеткой РНК. Избавиться от них клетка не может. Одно из распространенных мнений, что это — та самая «экзотическая» нуклеиновая кислота или «генетический паразит», который хочет размножаться даже во вред клетке. Однако, по видимому, более корректно говорить не о генетическом паразите, а о симбионте или, еще точнее, о дополнении к геному, который потому и удерживается клеткой, что помогает ей в определенных условиях выжить. Если бы эти элементы были бы только лишней нагрузкой, то они быстро элиминировались бы из популяции. И неважно, что несущая их клетка не может избавиться от них. Популяция под действием естественного отбора быстро очистилась бы от клеток с избыточной нагрузкой. И для таких микроэволюционных событий (очищений от избыточных структур в соответствии с энергетическими принципами), особенно в популяциях быстро размножающихся про- и эукариот, понадобились бы считанные недели и месяцы. А коль этого не происходит, то следует обратить внимание на полезность мобильных элементов для клетки популяции.

Как и бактериальные транспозоны, мобильные гены эукариот способны влиять на активность генов, в соседство с которыми они попали, перепрыгивая с места на место и меняя свою численность. Эти мобильные гены иногда обнаруживают большое сходство с прокариотными транспозонами и ретровирусами птиц и млекопитающих. При перемещениях в геноме они также могут «прихватить с собой» соседние структурные гены. Известно, что большая часть нестабильных мутаций (мутаций с высокой частотой возврата к нормальному фенотипу) связана с прыгающими генами.

Таким образом, мобильные генетические элементы и про- и эукариот, резко увеличивая рекомбинационные способности, позволяют клетками и популяциям адекватно реагировать на условия среды без прямого наследования приобретенных признаков. И адекватность эта, как мы видели, достигается «малой кровью», т.е. относительно низкой долей затрат на дополнительные структуры.

Мы не говорили о способе рекомбинации генетического материала с помощью половых процессов не потому, что он несущественен, а потому, что он наиболее изучен и общеизвестен. Ознакомление с другими механизмами, обеспечивающими приспособленность популяций низших организмов к условиям среды, показывает, что адекватное реагирование возможно и без прямого наследования полезных признаков. Эффективность его обеспечивается у популяций низших организмов за счет быстрой смены поколений (т.е. через действие отбора) и рекомбинации прежде всего дополнительного генетического материала и с его помощью — основного генома. На этом уровне вполне хватает тех механизмов неопределенной изменчивости, которые мы только что рассматривали. Определенная, т.е. направленная изменчивость оказывается ненужной, ибо она привела бы к резкому разбуханию генотипа. И потому она здесь запрещена, хотя и обеспечивала бы наиболее быстрое и адекватное реагирование, приспособление организмов к окружающей среде.

На магистральном направлении эволюции хищников она проявляется в виде воспитания и обучения потомков. Удлинение сроков жизни и уменьшение числа потомков, как мы знаем, характерно для магистрального направления эволюции, так как на этом пути экономится лимитирующее вещество и интенсивность работы биологических структур возрастает. Но именно длинные интервалы жизни и малое число потомков резко снижают эффективность действия отбора, а с ним и обнаруживает недостаточность неопределенной изменчивости. И в этих условиях возрастает роль информационно управляющих структур, прежде всего мозга, которые способны оценивать и запоминать информацию без строгого генетического контроля. Отсюда и возрастание роли направленной определенной изменчивости, «такой ламаркистской по сути». Наиболее ярко она проявляется у человека в его общественном поведении, в системе коллективного образования и воспитания. Естественно, что здесь работают уже не биологические, а социальные законы, человек перешел от биологической к культурной и экономической эволюции, он не пассивно подстраивается к среде, а активно ее перестраивает (это уже выходит за рамки нашего биологического рассмотрения).

Глава 12. Перспективы отдаленного будущего: человеческий разум и судьбы Вселенной

... В каждой мимолетности вижу я миры,

полные изменчивой радужной игры.

Не кляните, мудрые. Что вам до меня?

Я ведь только облачко, полное огня...

К. Д. Бальмонт

Итак, с позиций структурно-энергетического подхода к изучению эволюции мы можем подчеркнуть три важнейших положения. Во-первых, неизбежность возникновения жизни на нашей планете (т.е. в определенных условиях). Во вторых, наличие магистрального направления ее развития, ведущего к появлению и совершенствованию информационно-энергетических структур вплоть до появления разума в некоторых звеньях биологического круговорота. В третьих, рост «энерговооруженности жизни», и прежде всего разума. Рассмотрим эти положения чуть подробнее.

Жизнь на нашей планете развилась как результат ускорения вращения вещества под влиянием накачки энергией со стороны. Фазово-обособленные комочки делали это быстрее гомогенного окружения и победили в отборе на встраивание в круговорот. (В добиогенном этапе прошел отбор на самый энергоемкий и быстрый носитель — воду, на основе которой и развилась жизнь.) Напомним, что ускорение потока вещества в живой природе не просто сопутствующее явление. Во многих реакциях в живых организмах скорости трансформации веществ возросли по сравнению с абиотическим окружением в сотни миллионов — десятки миллиардов раз! К случайностям относить такие события, конечно, нельзя; использовать туманные представления о том, что это нужно для самоорганизации, в данном случае просто не требуется.