и мал.
Довольно любопытны некоторые приближенные способы построения. Например, приближенная квадратура круга получается, если за сторону квадрата взять хорду, проходящую через конец одного из радиусов круга (OB) и середину перпендикулярного ему радиуса (OC) (рис. 4). Этому построению соответствует значение π≈ 3,2.
Рис. 4
Теория построений при помощи циркуля и линейки получила широкое развитие в конце XIX в. Например, было показано, что любое построение, выполняемое с помощью циркуля и линейки, можно выполнить с помощью лишь одной линейки, если в плоскости построения задана некоторая окружность и указан ее центр.
ТЕОРЕМА МОРЛИ
Одна из трех знаменитых задач древности задача о делении произвольного угла на три равные части. Лишь сравнительно недавно было доказано, что деление угла с помощью циркуля и линейки не всегда возможно. Видимо, этим объясняется то, что лишь в 1899 г. был открыт следующий удивительный факт: если в произвольном треугольнике разделить каждый угол на три равные части, то точки пересечения делящих их лучей (рис. 1) окажутся вершинами равностороннего треугольника. Эта теорема получила название теоремы Франка Морли, по имени американского математика, открывшего этот факт. Позже было замечено, что этим свойством обладают также и точки пересечения лучей, делящих на равные части внешние углы произвольного треугольника (рис. 2).
Рис. 1
Рис. 2
ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ
Геометрическое преобразование плоскости - взаимно-однозначное отображение этой плоскости на себя. Наиболее важными геометрическими преобразованиями являются движения, т.е. преобразования, сохраняющие расстояние. Иначе говоря, если f - движение плоскости, то для любых двух точек A,B этой плоскости расстояние между точками f(A) и f(B) равно |AB|.
Движения связаны с понятием равенства (конгруэнтности) фигур: две фигуры F и G плоскости а называются равными, если существует движение этой плоскости, переводящее первую фигуру во вторую. Фактически это определение использовал еще Евклид (см. Геометрия), называвший две фигуры равными, если одну из них можно наложить на другую так, чтобы они совпали всеми своими точками; под наложением здесь следует понимать перекладывание фигуры как твердого целого (без изменения расстояний), т.е. движение.
Примерами движений плоскости являются осевая и центральная симметрия, параллельный перенос, поворот. Как пример, напомним определение параллельного переноса. Пусть - некоторый вектор плоскости α. Геометрическое преобразование, переводящее каждую точку A ∈α в такую точку A' что (рис. 1), называется параллельным переносом на вектор . Параллельный перенос является движением: если точки A и B переходят в A' и B', т.е. , , то , и потому |A'B'| = |AB|.
Рис. 1
При решении геометрических задач с помощью движений часто применяется свойство сохранения пересечения: при любом движении f пересечение фигур переходит в пересечение их образов, т.е. если P,Q - произвольные фигуры, то фигура P ∩ Q переходит в результате движения f в фигуру f(P) ∩ f(Q). (Аналогичное свойство справедливо для объединения.)
Задача 1. Окружность, центр которой принадлежит биссектрисе угла, пересекает его стороны в точках A,B,C и D (рис. 2). Доказать, что |AB|=|CD|.
Рис. 2
Решение. Обозначим через P одну из сторон угла, а через Q - круг, границей которого является рассматриваемая окружность. При симметрии s относительно биссектрисы угла луч P переходит в луч P', который образует вторую сторону угла, а круг Q переходит в себя: s(P) = P', s(Q) = Q. Согласно свойству сохранения пересечения фигура P ∩ Q переходит в s(P) ∩ s(Q), т. е. в P'∩Q. Иначе говоря, отрезок AB переходит в отрезок CD, и потому |AB|=|CD|.
Задача 2. Через точку A, данную внутри угла (меньшего, чем развернутый), провести прямую, отрезок которой, заключенный между сторонами угла, делится в этой точке пополам.
Решение. Обозначим через z симметрию относительно точки A, а через P и Q - прямые, на которых лежат стороны угла (рис. 3). В результате симметрии z прямая P переходит в параллельную ей прямую P' которая пересекает вторую сторону угла в точке C. Так как C ∈ P', то точка D, симметричная C, принадлежит прямой, которая симметрична P', т.е. D ∈ P. Таким образом, точки D ∈ P и C ∈ Q симметричны относительно A, и потому отрезок CD делится в точке A пополам, т.е. прямая CD - искомая.
Рис. 3
Нетрудно понять, почему в задаче 1 была применена осевая, а в задаче 2 – центральная симметрия. Так как биссектриса угла – его ось симметрии, то попытка применить осевую симметрию в задаче 1 совершенно естественна (так же, как и применение центральной симметрии в задаче 2, поскольку отрезок CD должен делиться в точке A пополам, т.е. искомые точки C и D должны быть симметричными относительно точки A). И в других случаях анализ условия задачи позволяет найти движение, применение которого дает решение.
Задача 3. На сторонах AB и BC треугольника ABC построены вне его квадраты ABMQ и BCPN. Доказать, что отрезок MN перпендикулярен медиане BD треугольника ABC и вдвое длиннее этой медианы.
Решение. Попытаемся применить поворот на 90°, т. е. убедиться, что при повороте на 90° вокруг точки B (по часовой стрелке) отрезок MN перейдет в отрезок, параллельный BD и имеющий вдвое большую длину. При этом повороте вектор переходит в (рис. 4), а вектор в . Следовательно, вектор переходит в , т. е. в . Но так как , то . Итак, при повороте на 90° вектор переходит в , т.е. в вектор, равный . Отсюда вытекает, что и |MN| = 2|BD|.
Рис. 4
Весьма существенна связь движений с ориентацией. На рис. 5 изображен многоугольник F, на контуре которого задано положительное направление обхода (против часовой стрелки). При параллельном переносе получается многоугольник с тем же направлением обхода, т.е. параллельный перенос сохраняет направление обхода, или, как говорят, сохраняет ориентацию. Поворот (в частности, центральная симметрия, представляющая собой поворот на 180°) также сохраняет ориентацию (рис. 6). Напротив, осевая симметрия меняет направление обхода на противоположное (рис. 7), т.е. меняет ориентацию. Другой пример движения, меняющего ориентацию – скользящая симметрия, т.е. композиция симметрии относительно некоторой прямой l и параллельного переноса, вектор которого параллелен l (рис. 8).
Рис. 5
Рис.6
Рис. 7
Рис. 8
Французский механик и геометр XIX в. М. Шаль сформулировал следующую теорему: всякое сохраняющее ориентацию движение плоскости является либо параллельным переносом, либо поворотом; всякое меняющее ориентацию движение плоскости является либо осевой, либо скользящей симметрией.
Задача 4. Доказать, что композиция двух осевых симметрий с пересекающимися осями представляет собой поворот.
Решение. Пусть s1 и s2 - осевые симметрии, оси которых (прямые l1 и l2) пересекаются в точке O. Так как оба движения s1,s2 меняют ориентацию, то их композиция s2∘ s1 (сначала выполняется s1, затем s2) является движением, сохраняющим ориентацию. По теореме Шаля, s2∘ s1 есть либо параллельный перенос, либо поворот. Но так как при каждом движении s1,s2 точка O неподвижна, то и при их композиции точка O остается на месте. Следовательно, s2∘ s1 есть поворот вокруг точки O. Как найти угол поворота, понятно из рис. 9: если φ - угол между прямыми l1 и l2, то (поскольку точка A ∈ l1 переводится движением s1 в себя, а движением s2 - в симметричную относительно l2 точку B) движение s2∘ s1, переводящее A в B, представляет собой поворот (вокруг точки O) на угол 2φ.
Рис. 9
Следующую по важности группу геометрических преобразований плоскости составляют преобразования подобия. Наиболее простое из них – гомотетия. Напомним, что гомотетией с центром O и коэффициентом k ≠ 0 называется геометрическое преобразование, которое произвольно взятую точку A переводит в такую точку A', что (рис. 10). Гомотетия переводит каждую прямую в параллельную ей прямую, каждую окружность снова переводит в окружность. Гомотетия сохраняет углы, а все длины увеличивает в |k| раз: если при гомотетии точки A,B переходят в A'B', то |A'B'| = |k|·|AB|. Из этого вытекает, что гомотетия сохраняет форму (но не размеры) фигур; если, например, k > 1, то фигура F', в которую переходит фигура F при гомотетии с центром O и коэффициентом k, представляет собой увеличенную копию фигуры F (рис. 10), а если 0 < k < 1 - уменьшенную копию.
Рис. 10
Поскольку при гомотетии все длины изменяются в одинаковое число раз, отношение длин не меняется. На этом основаны различные способы оценки расстояний; например, зная длину руки и длину большого пальца и прикинув, сколько раз большой палец вытянутой руки укладывается в видимом образе предмета, можно найти отношение высоты вертикального предмета к расстоянию до него (на рис. 11 имеем |AB| : |BO| = |A'B'| : |B'O|, откуда, измерив |BO|, можно найти |AB|, а потому и высоту трубы, которая примерно втрое больше |AB|).
Рис. 11
Задача 5. Построить квадрат, вписанный в данный сектор (две вершины квадрата лежат на одном радиусе, третья – на другом, четвертая – на дуге сектора).