Решение. Пусть ABCD и A1B1C1D1 (рис. 12) – два квадрата, вписанные в угол MON. При гомотетии с центром O, переводящей точку B в B1, (коэффициент этой гомотетии равен k = |OB1|/|OB|), отрезок AB переходит в отрезок A1B1, а потому квадрат ABCD переходит в квадрат A1B1C1D1 (поскольку углы, а также отношение отрезков сохраняются). Из этого вытекает, что вершины C и C1, лежат на одном луче, исходящем из точки O. Теперь ясно, что, построив какой-нибудь квадрат ABCD, вписанный в угол MON, и проведя луч OC, мы сможем найти вершину C' искомого квадрата (т.е. точку пересечения луча OC с дугой MN сектора), а затем достроить искомый квадрат (рис. 13).
Рис. 12
Рис. 13
Преобразование f плоскости α называется подобием с коэффициентом k>0, если для любых точек A,B плоскости α расстояние между точками f(A) и f(B) равно k·|AB|. Любое подобие (как и гомотетия – частный случай подобия) сохраняет углы, а также отношение длин, т.е. сохраняет форму фигур. Однако, в отличие от гомотетии, подобие может переводить прямую l в прямую l', не параллельную ей.
На рис. 14 изображены два плана P и P1, одного и того же участка местности, выполненные в разных масштабах и по-разному лежащие на плоскости. Эти планы представляют собой подобные, но не гомотетичные фигуры; например, прямая AB и соответствующая ей прямая A1B1 не параллельны. Чтобы получить план P1, исходя из плана P, можно поступить так: сначала повернуть план P, чтобы его стороны стали параллельными сторонам плана P1, а затем применить гомотетию. Иначе говоря, план P1, подобный P, получается из P при помощи композиции движения (поворота) и гомотетии.
Рис. 14
Указанное обстоятельство является общим, т.е. всякое подобие g представляется в виде композиции h ∘ f, где f - движение, а h - гомотетия. Из этого ясно, что при решении задач методом подобия можно ограничиваться лишь рассмотрением гомотетии (сопровождаемой некоторым движением). Это имеет определенные удобства: вспомните, с каким напряженным вниманием отыскиваются соответственные стороны по-разному расположенных подобных треугольников при выписывании равенства отношений сторон (и с какой легкостью выписываются эти отношения для гомотетичных треугольников).
Задача 6. Стороны треугольника ABC связаны соотношением a2 = c(b+c). Доказать, что угол A вдвое больше угла C.
Решение. Пусть D - такая точка прямой AB, что |AD| = b, причем A лежит между B и D (рис. 15). Тогда треугольник ACD - равнобедренный, и потому ∠1 = ∠2; кроме того, |BD| = b + c. При симметрии относительно биссектрисы угла B точки A и C перейдут в такие точки A' и C', что |BA'| = |BA| = c, |BC'| = |BC| = a; кроме того ∠3 = ∠4. Равенство a2 = c(b+c) можно переписать в виде
(b + c)/a = a/c, т.е. |BD|/|BC| = |BC'|/|BA'|,
откуда следует, что при гомотетии с центром B и коэффициентом k = |BD|/|BC'| точки D,C переходят в C',A'. Следовательно DC||C'A' и потому ∠2 = ∠4, т.е. ∠1 = ∠2 = ∠3 = ∠4. Так как BAC - внешний угол треугольника ACD, то он равен сумме углов ∠1 и ∠2 , т.е. равен удвоенному углу C.
Рис. 15
В заключение рассказа о преобразованиях подобия заметим, что они составляют группу преобразований и потому (см. Геометрия) согласно Эрлангенской программе определяют «свою» геометрию. Инвариантами этой группы (т.е. теми свойствами, которые сохраняются при всех преобразованиях подобия и изучаются в геометрии подобий) являются угол, отношение длин двух отрезков, параллельность двух прямых и т.д. Хотя длина отрезка уже не сохраняется, но в силу сохранения отношения длин в геометрии подобий можно говорить о равнобедренном треугольнике (т.е. о треугольнике, в котором отношение длин боковых сторон равно 1). Теорема о том, что в равнобедренном треугольнике углы при основании равны, сохраняется и в геометрии подобий. Сохраняется также теорема Пифагора (в форме (a/c)2 + (b/c)2 = 1, где a/c и b/c - отношения длин катетов к длине гипотенузы) и т.п.
Однако не следует думать, что геометрия подобий ничем, кроме формы изложения, не отличается от евклидовой геометрии. Существуют факты, которые отличают эти две геометрии. Например, условимся говорить, что линия L может скользить но себе, если для любых двух точек A,B этой линии найдется преобразование f (принадлежащее группе, задающей рассматриваемую геометрию), которое переводит линию L в себя, а точку A - в B. В геометрии Евклида (т.е. в геометрии, определяемой группой движений плоскости) существуют только два типа связных линий (т.е. состоящих из одного куска), которые могут скользить по себе: прямые и окружности. А в геометрии подобий существуют линии, отличные от прямых и окружностей, которые могут скользить по себе; это – логарифмические спирали, определяемые в полярных координатах уравнением ρ = ρ0ekφ (рис. 16).
Рис. 16
Еще один необычный факт геометрии подобий мы получим, рассматривая преобразование g = h ∘ r, где r - поворот вокруг точки O на угол φ0, а h - гомотетия с центром O и коэффициентом k0> 0. Пусть ..., A-2,A-1,A0,A1,A2... - последовательность точек, переходящих друг в друга при преобразовании g, т.е. g(Ai) = Ai+1 при любом целом i (рис. 17). Эти точки лежат на одной логарифмической спирали, причем для любого целого i угол AiOAi+1 имеет одну и ту же величину φ0. Последовательно соединяя эти точки, мы получим бесконечную ломаную линию ..., A-2,A-1,A0,A1,A2..., которая переводится преобразованием g в себя, причем каждая вершина Ai переводится в соседнюю вершину Ai+1.
Рис. 17
Заметим, что рассмотренное преобразование подобия g = h ∘ r (его называют поворотным растяжением) имеет тесную связь с комплексными числами. Комплексное число z = x + iy можно представить в виде направленного отрезка, идущего из начала координат в точку (x;y). При таком геометрическом изображении комплексные числа складываются как векторы (рис. 18). А для получения геометрической интерпретации умножения комплексных чисел удобно поворотное растяжение g = h ∘ r, рассмотренное выше. Именно, пусть z = x + iy - некоторое комплексное число, ρ - его модуль (т.е. длина изображающего отрезка), а φ - аргумент (т.е. угол наклона изображающего направленного отрезка к положительной части оси абсцисс). Число z получается из числа 1, если, во-первых, вектор, изображающий число 1, растянуть в ρ раз, и, во-вторых, повернуть его на угол φ (рис. 19), т. е. вектор z получается из вектора 1 преобразованием g = h ∘ r = r ∘ h, где h - гомотетия с центром в начале и коэффициентом ρ, а r - поворот вокруг начала на угол φ. Итак, z = g(1). Если теперь z' = x' + iy' - другое комплексное число, то при применении преобразования g (т. е. при растяжении изображающего вектора в ρ раз и повороте его на угол φ) число z' переходит в z" (рис. 19). Можно сказать и иначе: треугольники на рис. 19 подобны. Это и дает геометрическую интерпретацию умножения комплексных чисел. Из сказанного ясно, что при умножении всех комплексных чисел на одно и то же комплексное число z вся плоскость комплексных чисел подвергается поворотному растяжению. В частности, для любых трех комплексных чисел z0,z1,z2 мы имеем z2 - z0 = z(z1 - z0), где z - комплексное число, модуль которого равен отношению длин векторов z2 - z0 и z1 - z0, а аргумент равен углу между этими векторами (рис. 20).
Рис. 18
Рис. 19
Рис. 20
Задача 7. На сторонах треугольника A1A2A3 построены вне его подобные между собой треугольники A1B1A2, A2B2A3, A3B3A1. Доказать, что точка пересечения медиан ΔB1B2B3 совпадает с точкой пересечения медиан ΔA1A2A3.
Решение. Обозначим через a1,a2,a3,b1,b2,b3 комплексные числа, изображаемые векторами , , , , , . Тогда a2 - b1 = z(a1 - b1), a3 - b2 = z(a2 - b2), a1 - b3 = z(a3 - b3), где z - комплексное число, модуль которого равен отношению боковых сторон рассматриваемых подобных треугольников, а аргумент равен φ (рис. 21). Складывая эти равенства, получаем (после очевидных упрощений):
(z-1)(b1 + b2 + b3) = (z-1)(a1 + a2 + a3) .
Рис. 21
Так как z ≠ 1 (поскольку аргумент φ числа z отличен от нуля), то отсюда следует, что b1 + b2 + b3 = a1 + a2 + a3. Переходя к векторным