Энциклопедический словарь юного математика — страница 24 из 95


В руках у электрика можно увидеть таблицу, где для проводов различных диаметров указаны предельно допустимые значения силы тока, на парте школьника – таблицы логарифмов и тригонометрических функций... Все это примеры табличного представления функций. В выкладках и расчетах функции обычно задают с помощью формул.

У каждого способа представления функции есть свои достоинства. Словесный наиболее прост и доходчив, если, конечно, функцию удается описать простыми фразами. Формулы часто используют потому, что с ними удобно проводить вычисления, их можно преобразовывать и анализировать, выясняя свойства функции. Табличный способ предпочитают тогда, когда трудно вычислить значения функции или когда она может принимать лишь несколько отдельных значений (здесь убедителен пример с проводами: по действующим в промышленности стандартам их диаметры могут равняться только нескольким определенным значениям).

Графический способ представления функции – самый наглядный. График функции – это линия, дающая цельное представление о характере изменения функции по мере изменения ее аргумента. А именно, график функции y=f(x) - это множество точек (x,y) на координатной плоскости, где координате x придаются всевозможные значения из области определения функции, и для каждою такого x значение y определяется функциональной зависимостью y=f(x). Функциональная зависимость предполагает, что каждому значению x из области определения функции соответствует одно, и только одно, значение y. Отсюда следует, что любой перпендикуляр, восставленный к оси абсцисс в какой-либо точке из области определения функции, пересекает ее график лишь в одной точке. Поэтому линии, изображенные на рис. 1, не могут быть графиками никаких функций, а линия, изображенная на рис. 2, есть график некоторой функции.

Рис. 1

Рис. 2

Благодаря своей наглядности графический способ задания функций часто сопутствует другим способам. Выведя формулу какой-либо функциональной зависимости, исследователь вслед за этим строит еще и ее график. На многих электронных вычислительных машинах кроме печатающего устройства, выдающего результаты расчетов в виде колонки цифр, есть и графопостроитель, представляющий те же результаты в форме графиков. Многие приборы выдают показания именно в виде графиков. Например, барограф вычерчивает график атмосферного давления как функции времени, кардиограмму можно назвать графиком работы сердца.

Графики большинства функций имеют названия, сходные с названием самой функции. График функции синус называют синусоидой, график функции тангенс – тангенсоидой, график логарифмической функции – логарифмикой и т.д.

Чтобы построить эскиз графика функции, предварительно проводят ее исследование. Оно ведется поэтапно следующим путем.

Находят область определения функции и область ее значений. Это определяет разметку координатных осей, в которых строится график.

Находят промежутки непрерывности функции и определяют точки ее разрыва. В точках бесконечного разрыва проводят вспомогательные (например, пунктирные) прямые -  асимптоты, к которым будет приближаться график функции, уходя в бесконечность того или иного знака. На эскизе указывают такое поведение графика в точках разрыва.


Далее вычисляют первую производную функции и отыскивают точки, в которых производная не существует или равна нулю (критические точки), а также находят участки возрастания и убывания функции. Если на некотором промежутке производная функции положительна, то функция здесь возрастает. Если отрицательна – функция убывает на этом участке.

Находят экстремумы функции. Точки экстремума входят в число критических. Для непрерывных функций, имеющих производную по обе стороны от критической точки, далее исследуют знак производной. Если она положительна слева от критической точки и отрицательна справа, то функция в этой точке достигает максимума. Если производная отрицательна слева от критической точки и положительна справа, то функция в этой точке имеет минимум.

Находят участки, где функция выпукла вверх и где она выпукла вниз (см. Выпуклые функции). Если на некотором промежутке вторая производная функция отрицательна, то функция здесь выпукла вверх. Если положительна – функция выпукла вниз на этом участке.

Исследуя функцию, находят также точки перегиба функции, т.е. такие точки, по обе стороны от которых направление выпуклости функции неодинаково.

Находят уравнения асимптот функции, если они существуют, и проводят асимптоты на координатной плоскости.

Теперь остается начертить сам график: соединить нанесенные на координатную плоскость точки линией, учитывая ее возрастание или убывание, выпуклость вверх или вниз, а если есть асимптоты – подвести к ним ветви графика, показывая их сближение с асимптотами.

Чтобы уточнить график, нередко вычисляют значения функции в каких-либо точках, отыскивают точки пересечения графика с координатными осями и т.д. В некоторых случаях график функции можно построить по заданной его части или по графику другой функции с помощью линейных преобразований: параллельного переноса, растяжения (или сжатия), преобразования симметрии (см. Геометрические преобразования).

С помощью параллельного переноса вдоль оси Ox или оси Oy по заданному графику функции y=f(x) можно построить графики функций y = f(x+a) (рис. 3) и y = f(x)+b (рис. 4). С помощью растяжения или сжатия по оси Ox или оси Oy можно построить график функции y = f(kx) (рис. 5) и y = mf(x) (рис. 6). Для построения графика функции y = mf(kx+a)+b последовательно применяют вышеуказанные преобразования. График функции g = y(x) = f-1(x), обратный функции y=f(x), симметричен относительно биссектрисы первого координатного угла (рис. 7). График функции y = -f(x) может быть получен из графика функции y=f(x) отражением относительно оси Ox (рис. 8), а график функции f(-x) - из графика функции f(x) отражением относительно оси Oy (рис. 9). График функции y = |f(x)| получается отражением относительно оси Ox частей графика y=f(x) при y < 0 (рис. 10).

Если y=f(x) периодическая функция с периодом T, то достаточно построить часть ее графика для 0 ≤ x ≤ T, и тогда весь график функции получается переносом построенной части вдоль оси абсцисс на отрезки kT (рис. 11). График функции y = 1/f(x) получается из графика функции y=f(x) заменой каждой ординаты y величиной ей обратной 1/y (рис. 12).

Графики функций часто используются для приближенного решения уравнений (например, f(x) = 0 в точках x1,x2,x3, рис. 13), систем уравнений и неравенств. Например, при решении уравнения вида f(x) = g(x) строятся графики функций y=f(x) и y = g(x). Абсциссы точек пересечения этих графиков являются корнями уравнения (рис. 14). Те участки оси Ox на которых график y=f(x) лежит выше графика y = g(x) являются решениями неравенства f(x) > g(x) (рис. 14).


ГЕОМЕТРИЯ КОМБИНАТОРНАЯ


На рис. 1 каждый из шести кругов имеет общую точку с кругом, расположенным внутри; при этом никакие два круга не имеют общих внутренних точек. А на рис. 2 имеется восемь квадратов, каждый из которых также имеет общую точку с внутренним квадратом (и снова фигуры попарно не имеют общих внутренних точек). А можно ли вокруг некоторой выпуклой фигуры таким же образом расположить девять равных ей фигур, полученных из исходной с помощью параллельного переноса? Ответ отрицателен, хотя доказать это и непросто.

Рис. 1

Рис. 2

Рассмотренный вопрос относится к комбинаторной геометрии новой ветви математики, сформировавшейся лишь в XX в. Она занимается различными задачами, связанными с взаимным расположением нескольких фигур (чаще всего выпуклых), с разрезанием фигур на части, с освещением границы фигуры несколькими источниками света и т. п. При этом всегда ставится экстремальная задача: найти наибольшее число выпуклых фигур, расположенных так, как говорилось выше (рис. 1, 2), найти наименьшее число параллельных световых пучков, освещающих всю границу выпуклого тела (рис. 3), и т. п. Различных постановок комбинаторно-геометрических задач очень много, причем, как правило, они легко формулируются, но решение каждой из них требует огромных усилий.

Рис. 3

В настоящее время в комбинаторной геометрии выделились несколько ведущих направлений. Одним из них является круг задач, связанных с теоремой Хелли (см. Выпуклые фигуры). Например, из теоремы Хелли следует, что для любого набора точек на плоскости, такого, что каждые три его точки можно покрыть кругом радиуса r, найдется такой круг радиуса r, который покроет все эти точки.

Вот еще пример утверждения, которое легко получить из теоремы Хелли. В параллелограмме (или иной центрально симметричной фигуре) имеется такая точка O, что на любой прямой, проходящей через O, высекаются отрезки AO,BO, отношение которых равно 1 (рис. 4). В треугольнике такой точки нет, но можно выбрать такую точку O, что отношение отрезков AO и BO заключено между 1/2 и 2 (рис. 5). Оказывается, что внутри любой выпуклой фигуры F на плоскости найдется такая точка O, для которой отношение отрезков AO и BO (на любой прямой, проходящей через O) заключено между 1/2 и 2. Треугольник в этом смысле самая несимметричная фигура.

Рис. 4

Рис. 5

Теорема Хелли и различные ее обобщения и применения составляют сегодня важный раздел комбинаторной геометрии. Причем применяется она не только в геометрии, но и во многих других областях математики. Например, в прошлом столетии русский математик П. Л. Чебышев установил ряд интересных свойств функций, «наименее уклоняющихся от нуля». А впоследствии оказалось, что свойства этих функций наиболее просто и геометрично выводятся именно с помощью теоремы Хелли.

Зарождение еще одного направления в комбинаторной геометрии связано с именем польского математика К. Борсука. Он исходил из интересного результата, полученною венгерским математиком Палом: всякая фигура диаметра d (т. е. фигура, у которой наибольшее расстояние между двумя точками равно d) может быть вмещена в правильный шестиугольник, у которого расстояние между противоположными сторонами равно d (рис. 6). Этот шестиугольник (а вместе с ним и расположенная в нем фигура) может быть разбит на три части, каждая из которых имеет диаметр