ЕВКЛИД И ЕГО «НАЧАЛА»
В течение двух тысяч лет геометрию узнавали либо из «Начал» Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Аполлония – и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX в. «неевклидовых геометрий».
Об этом поразительном человеке история сохранила настолько мало сведений, что нередко высказываются сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V в. н.э., - первый серьезный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея I, который царствовал с 306 по 283 г. до н.э.
Евклид должен быть старше Архимеда, который ссылался на «Начала». До наших времен дошли сведения, что он преподавал в Александрии, столице Птолемея I, начинавшей превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые, по мнению Платона, должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию. Кроме «Начал» до нас дошли книги Евклида, посвященные гармонии и астрономии.
Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора (VI в. до н. э.), Евдокса и Теэтета (IV в. до н.э.). Величайшая заслуга Евклида в том, что он подвел итог построению геометрии и придал изложению столь совершенную форму, что на две тысячи лет «Начала» стали энциклопедией геометрии.
Евклид с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в «Начала» еще две книги – XIV-ю и XV-ю, написанные другими авторами.
Первая книга Евклида начинается с 23 «определений», среди них такие: точка есть то, что не имеет частей; линия есть длина без ширины; линия ограничена точками; прямая есть линия, одинаково расположенная относительно всех своих точек; наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолженные, не встречаются. Это скорее наглядные представления об основных объектах, и слово «определение» в современном понимании не точно передает смысл греческого слова «хорой», которым пользовался Евклид.
В книге I рассматриваются основные свойства треугольников, прямоугольников, параллелограммов, сравниваются их площади. Здесь появляется теорема о сумме углов треугольника. Затем следует пять геометрических постулатов: через две точки можно провести одну прямую; каждая прямая может быть сколь угодно продолжена; данным радиусом из данной точки можно провести окружность; все прямые углы равны; если две прямые проведены к третьей под углами, составляющими в сумме меньше двух прямых, то они встречаются с той же стороны от этой прямой. Все эти постулаты, кроме одного, вошли в современные курсы основной геометрии. За постулатами приводятся общие предположения, или аксиомы – восемь общематематических утверждений о равенствах и неравенствах. Книга заканчивается теоремой Пифагора (см. Пифагора теорема).
В книге II излагается геометрическая алгебра, с помощью геометрических чертежей даются решения задач, сводящихся к квадратным уравнениям. Алгебраической символики тогда не существовало.
В книге III рассматриваются свойства круга, свойства касательных и хорд, в книге IV – правильные многоугольники, появляются основы учения о подобии. В книгах VII-IX изложены начала теории чисел (см. Чисел теория), основанной на алгоритме нахождения наибольшего общего делителя, приводится алгоритм Евклида (см. Евклида алгоритм), сюда входит теория делимости и теорема о бесконечности множества простых чисел.
Последние книги посвящены стереометрии. В книге XI излагаются начала стереометрии, в XII с помощью метода исчерпания определяются отношение площадей двух кругов и отношение объемов пирамиды и призмы, конуса и цилиндра. Вершина стереометрии у Евклида – теория правильных многогранников. В «Начала» не попало одно из величайших достижений греческих геометров – теория конических сечений. О них Евклид написал отдельную книгу «Начала конических сечений», не дошедшую до нас, но ее цитировал в своих сочинениях Архимед.
«Начала» Евклида не дошли до нас в подлиннике. Двенадцать столетий отделяют от Евклида самые старые известные списки, семь столетий – сколь-нибудь подробные сведения о «Началах». В средневековую эпоху интерес к математике был утрачен, некоторые книги «Начал» пропали и потом с трудом восстанавливались по латинским и арабским переводам. А к тому времени тексты обросли «улучшениями» позднейших комментаторов.
В период возрождения европейской математики (XVI в.) «Начала» изучали и воссоздавали заново. Логическое построение «Начал», аксиоматика Евклида воспринимались математиками как нечто безупречное до XIX в., когда начался период критического отношения к достигнутому, который закончился новой аксиоматикой евклидовой геометрии – аксиоматикой Д. Гильберта. Изложение геометрии в «Началах» считалось образцом, которому стремились следовать ученые и за пределами математики.
ЕВКЛИДА АЛГОРИТМ
Алгоритм Евклида – это способ нахождения наибольшего общего делителя двух целых чисел, а также наибольшей общей меры двух соизмеримых отрезков.
Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток – на второй и т.д. Последний ненулевой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.
Обозначив исходные числа через a и b, положительные остатки, получающиеся в результате делений, через r1,r2,...rn, а неполные частные через q1,q2,...qn+1, можно записать алгоритм Евклида в виде цепочки равенств:
a=bq1+r1
b=r1q2+r2
......................
rn-2=rn-1qn+rn
rn-1=rnqn+1 Приведем пример. Пусть a=777, b=629. Тогда 777=629·1+148, 629=148·4+37, 148=37·4. Последний ненулевой остаток 37 и есть наибольший общий делитель чисел 777 и 629.
Для нахождения наибольшей общей меры двух отрезков поступают аналогично. Операцию деления с остатком заменяют ее геометрическим аналогом: меньший отрезок откладывают на большем столько раз, сколько возможно; оставшуюся часть большего отрезка (принимаемую за «остаток от деления») откладывают на меньшем отрезке и т.д. Если отрезки a и b соизмеримы, то последний ненулевой остаток даст наибольшую общую меру этих отрезков. В случае несоизмеримых отрезков получаемая последовательность ненулевых остатков будет бесконечной.
Рассмотрим пример. Возьмем в качестве исходных отрезков стороны AB и AC равнобедренного треугольника ABC, у которого , . В качестве первого остатка мы получим отрезок AD (CD - биссектриса угла C), и, как легко видеть, последовательность ненулевых остатков будет бесконечной. Значит, отрезки AB и AC несоизмеримы.
Алгоритм Евклида известен издавна. Ему уже более 2 тыс. лет. Этот алгоритм сформулирован в «Началах» Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного и т.д. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида (иногда называемый методом попеременного вычитания) был известен еще пифагорейцам. К середине XVI в. алгоритм Евклида был распространен на многочлены от одного переменного. В дальнейшем удалось определить алгоритм Евклида и для некоторых других алгебраических объектов.
Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший общий делитель d чисел a и b в виде d=ax+by (x,y - целые числа), а это позволяет находить решения диофантовых уравнений 1-й степени с двумя неизвестными. Алгоритм Евклида является средством для представления рационального числа в виде цепной дроби (см. Календарь). Он часто используется в программах для электронных вычислительных машин.
ЕДИНИЦА
Единица – это первое число натурального ряда, а также одна из цифр в десятичной системе счисления.
Считается, что обозначение единицы любого разряда одним и тем же знаком (довольно близким современному) появилось впервые в Древнем Вавилоне приблизительно за 2 тыс. лет до н.э.
Древние греки, считавшие числами лишь натуральные числа, рассматривали каждое из них как собрание единиц. Самой же единице отводилось особое место: она числом не считалась. (Это заставляло, например, Евклида отдельно доказывать свойства пропорций в случае, когда один из членов пропорции равен единице.)
Но уже И. Ньютон писал: «...под числом мы понимаем не столько собрание единиц, сколько отвлеченное отношение одной величины к другой величине, условно принятой нами за единицу». Таким образом, к тому времени единица уже заняла свое законное место среди других чисел.
Основное свойство, характеризующее число 1, таково: a·1=a для любого числа a.
Это свойство числа 1 переносится и на некоторые другие математические объекты, для которых определена операция умножения (см. Группа).
ЗНАКИ МАТЕМАТИЧЕСКИЕ
Знаки математические – условные обозначения, которые служат для записи математических понятий, предложений, соотношений. Развитие системы обозначений в математике было тесно связано с общим развитием ее понятий и методов.