π. Таким образом, длина окружности круга радиуса r равна 2πr, а так как площадь круга равна S = πr2 (см. Окружность и круг), то задача о квадратуре круга сводится к задаче построения треугольника с основанием 2πr и высотой r. Для него потом уже без труда может быть построен равновеликий квадрат (см. Равновеликие и равносоставленные фигуры).
Итак, задача сводилась к построению отрезка, длина которого равна длине окружности данного круга. Это было показано еще Архимедом в сочинении «Измерение круга», где он доказывает, что число π меньше чем 3 1/7, но больше чем 3 10/71, т.е. 3,1408 <π< 3,1429.
В наши дни с помощью ЭВМ число π вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа π ( π = 3,141592653...) вполне достаточно для всех практических целей. Долгое время в качестве приближенного значения π использовали число 22/7, хотя уже в V в. в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI в. В Древней Индии π считали равным √10 = 3,1622.... Французский математик Ф. Виет вычислил в 1579 г. π с 9 знаками. Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда - число π, вычисленное с 32 знаками.
Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон (рис. 1,а). Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника - больше. Но при этом оставалось неясным, является ли число π рациональным, т.е. отношением двух целых чисел, или иррациональным. Лишь в 1767 г. немецкий математик И. Г. Ламберт доказал, что число π иррационально, а еще через сто с лишним лет в 1882 г. другой немецкий математик - Ф. Линдеман доказал его трансцендентность (см. Число), что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.
«Возьму линейку, проведу прямую. И мигом круг квадратом обернется». Аристофан
Конечно, способов приближенного решения квадратуры круга с помощью циркуля и линейки было придумано великое множество. Так, в Древнем Египте было распространено правило: площадь круга равна площади квадрата со стороной, равной 8/9; π = 256/81 = 3,1604....
Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали другие инструменты или специально построенные кривые. Так, в V в. до н. э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).
Квадратриса Динострата получается следующим образом. Пусть дана окружность радиуса a (рис. 1,б). Начнем вращать радиус OA с угловой скоростью π/2 вокруг точки O - центра окружности - и одновременно равномерно перемещать влево со скоростью a вертикальную прямую от точки A к точке C. Точка M их пересечения и будет описывать квадратрису. Если взять за оси координат прямую OA и прямую OB, то в момент времени t точка M будет иметь координаты
a(1-t) и a(1-t) tg πt/2.
Рис. 1
При стремлении t к 1 точка M стремится к точке P, при этом абсцисса точки M стремится к нулю, а у ординаты один множитель стремится к нулю, а другой – к бесконечности. Их произведение будет стремиться к числу 2a/π, поэтому длина отрезка OP равна 2a/π. Следовательно, имеет место соотношение AC/OP = π.
Пусть теперь дана окружность радиуса r. Тогда имеем соотношение 2πr/2r = AC/OP, в котором известны AC, OP и 2r - диаметр данной окружности. По ним мы можем построить отрезок, равный 2πr - длине окружности, это будет четвертый пропорциональный отрезок к известным трем (рис. 1,в).
Чрезвычайно любопытно, что квадратриса Динострата решает и вторую из знаменитых задач древности – задачу о трисекции угла. Для этого нужно отложить данный угол так, чтобы его вершина находилась в точке O, а одна из сторон совпала с лучом OA (рис. 1,г). Из точки N пересечения квадратрисы со вторым лучом угла опускаем перпендикуляр NK на OA, а затем делим отрезок KA на три равные части. Если восставить в точках деления перпендикуляры к прямой OA до пересечения с квадратрисой, а затем соединить полученные точки пересечения с точкой O, то полученные углы окажутся равными. Это следует из метода построения квадратрисы. Аналогичным образом можно делить любой угол на произвольное количество равных частей.
Напомним, что в классической постановке задачи о трисекции угла такое построение требовалось произвести лишь с помощью циркуля и линейки! В 1837 г. французский математик П. Ванцель доказал, что в общем виде задача не имеет решения, а возможно такое деление лишь в нескольких исключительных случаях, в частности для угла α = π/2 и всех углов вида π/2n.
Как известно, имеет место тождество cos α = 4 cos3α/3 - 3 cos α/3. Если обозначим 2 cos α = a, 2 cos α/3 = x, то получим такое кубическое уравнение: x3 - 3x - a = 0. Оказалось, что трисекция угла возможна для тех углов α, для которых корни этого уравнения выражаются через параметр a и целые числа лишь с помощью операций сложения, вычитания, умножения, деления и извлечения квадратного корня. В частности, если α = π/2, т. е. a = 0, то получаем уравнение x3 - 3x = 0, имеющее корни 0, +√3, -√3.
К кубическому уравнению сводится и знаменитая «делосская задача» удвоения куба. Свое название она получила от острова Делос в Эгейском море, где, по легенде, чтобы избавить жителей от эпидемии, оракул повелел удвоить алтарь, имевший форму куба. Но в действительности она, наверное, возникла в умах математиков как обобщение задачи об удвоении квадрата. Для того чтобы построить квадрат вдвое большей площади, чем данный, достаточно провести у данного квадрата диагональ (рис. 1,д) и принять ее за сторону нового квадрата.
Задача об удвоении куба оказалась существенно более трудной. Если обозначить через a длину стороны исходного куба, а через x – длину стороны вдвое большего куба, то получим соотношение x3 = 2a3 – снова кубическое уравнение. В 1837 г. тот же П. Ванцель доказал, что невозможно построить с помощью только циркуля и линейки отрезок, в раз больший данного, т.е. подтвердил неразрешимость задачи удвоения куба.
Естественно, что существовали способы приближенного решения этой задачи и решения ее с помощью других инструментов и кривых. Так, уже в IV в. до н.э. древнегреческие математики умели находить корень уравнения x3 = 2a3 как абсциссу точки пересечения двух парабол x2 = ay и y2 = 2ax (рис. 1,е), а также других конических сечений.
На протяжении многих веков три знаменитые задачи древности привлекали внимание выдающихся математиков. В процессе их решения рождались и совершенствовались многие математические методы.
КОМБИНАТОРИКА
Комбинаторика – раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.
Выбором объектов и расположением их в том или ином порядке приходится заниматься чуть ли не во всех областях человеческой деятельности, например конструктору, разрабатывающему новую модель механизма, ученому-агроному, планирующему распределение сельскохозяйственных культур на нескольких полях, химику, изучающему строение органических молекул, имеющих данный атомный состав.
С аналогичными задачами, получившими название комбинаторных, люди столкнулись в глубокой древности. Уже несколько тысячелетий назад в Древнем Китае увлекались составлением магических квадратов (см. Магические и латинские квадраты), в которых заданные числа располагали так, что их сумма по всем горизонталям, вертикалям и главным диагоналям была одной и той же. В Древней Греции подсчитывали число различных комбинаций длинных и коротких слогов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей особым образом разрезанного квадрата, и т.д.
Комбинаторные задачи возникали и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д. (Например, задача о расстановке восьми ферзей на шахматной доске так, чтобы ни один из них не оказался под боем, об обходе всех полей доски шахматным конем и т.д. (см. Математика на шахматной доске).
Комбинаторика становится наукой лишь в XVII в. – в период, когда возникла теория вероятностей. Чтобы решать теоретико-вероятностные задачи, нужно было уметь подсчитывать число различных комбинаций, подчиненных тем или иным условиям. После первых работ, выполненных в XVI в. итальянскими учеными Дж. Кардано, Н. Тартальей и Г. Галилеем, такие задачи изучали французские математики Б. Паскаль и П. Ферма. Первым рассматривал комбинаторику как самостоятельную ветвь науки немецкий философ и математик Г. Лейбниц, опубликовавший в 1666 г. работу «Об искусстве комбинаторики», в которой впервые появляется сам термин «комбинаторный». Замечательные достижения в области комбинаторики принадлежат Л. Эйлеру. Комбинаторными задачами интересовались и математики, занимавшиеся составлением и разгадыванием шифров, изучением древних письменностей. Теперь комбинаторика находит приложения во многих областях науки: в биологии, где она применяется для изучения состава белков и ДНК, в химии, механике сложных сооружений и т.д.
Игра в шахматы есть как бы насвистывание математических мелодий. Г. Харди