Энциклопедический словарь юного математика — страница 40 из 95

отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII в. н.э. было установлено, что квадратный корень из положительного числа имеет два значения – положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа x, чтобы x2 = -9.

В XVI в. в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений (см. Алгебраическое уравнение) содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения x3 + 3x - 4 = 0), а если оно имело три действительных корня (например, x3 - 7x + 6 = 0), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим трем корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

«Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают все более и более широкое распространение». Ф. Клейн


Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений x + y = 10, xy = 40, не имеющая решений в множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637 г. французский математик и философ Р. Декарт, а в 1777 г. один из крупнейших математиков XVIII в. – Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа  («мнимой» единицы); этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831).

В течение XVII в. продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование.

Постепенно развивалась техника операций над комплексными числами. На рубеже XVII и XVIII вв. была построена общая теория корней n-й степени сначала из отрицательных, а потом из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707)

(cos φ + i sin φ)n = cos nφ + i sin nφ.

С помощью этой формулы можно также вывести равенства для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 г. замечательную формулу

eix = cos x + i sin x,

которая связывала воедино показательную функцию с тригонометрическими. С помощью формулы Эйлера можно возводить число e в любую комплексную степень. Любопытно, например, что e = -1. Можно находить синусы и косинусы от комплексных чисел, вычислять логарифмы таких чисел, т.е. строить теорию функций комплексного переменного.

«Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств». П. Карно


В конце XVIII в. французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще ранее швейцарский математик Я. Бернулли применил комплексные числа для вычисления интегралов.

Хотя в течение XVIII в. с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т.д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведения, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами.


КАРЛ ФРИДРИХ ГАУСС

(1777-1855)

Математические вычисления заменили Гауссу обычные детские игры. Он делил единицу на все простые числа p из первой тысячи подряд, подмечая, что десятичные знаки рано или поздно начинают повторяться. Рассмотрев большое количество примеров, Гаусс доказал, что число цифр в периоде не превосходит p-1 и всегда является делителем p-1. Он интересовался случаями, когда период в точности равен p-1, и это постепенно привело его к первому открытию.

Ученый доказал, что правильный n-угольник, где n – число простое, может быть построен циркулем и линейкой в том, и только в том, случае, когда n имеет вид . Например, если k = 0,1,2,3, то правильные трех-, пяти-, семнадцати- и 257-угольники можно построить циркулем и линейкой, а семиугольник – нельзя. Еще древние математики (в их числе Архимед) умели строить циркулем и линейкой правильные n-угольники при n = 3,4,5,6 и вообще при n = 2k; 2k·3; 2k·5; 2k·15, и только такие. Ученые безуспешно пытались построить правильный семиугольник, девятиугольник. А Гаусс дал полное решение проблемы, над которой трудились ученые в течение 2 тыс. лет.

С этого момента девятнадцатилетний Гаусс окончательно решил заниматься математикой (до этого он не мог сделать выбор между математикой и филологией). И всего через 9 дней в его дневнике появляется запись о втором открытии. Гаусс доказал так называемый квадратичный закон взаимности – один из основных в теории чисел. Этот закон открыл еще Л. Эйлер, но доказать его не смог.

С именем К. Ф. Гаусса связаны многие замечательные страницы в истории математики. Он дал доказательство основной теоремы алгебры (всякое алгебраическое уравнение с действительными коэффициентами имеет корень). Гаусс создал теорию поверхностей. До него были изучены геометрии только на двух поверхностях: на плоскости (планиметрия Евклида) и на сфере (сферическая геометрия). Гаусс нашел способ построения геометрии на любой поверхности, определил, какие линии играют на поверхности роль прямых, как мерить расстояния между точками на поверхности и т.д. Теория Гаусса получила название внутренней геометрии. Он не опубликовал своих работ по неевклидовой геометрии и теории эллиптических функций. Эти результаты были открыты заново его младшими современниками: русским математиком Н. И. Лобачевским и венгерским математиком Я. Больяй – в первом случае и норвежским математиком Г. X. Абелем и немецким математиком К. Г. Якоби – во втором.

Гаусс занимался также астрономией, электромагнетизмом. Ему удалось вычислить орбиту малой планеты (астероида) Цереры. Решение этой сложной задачи принесло ученому известность, и он был приглашен заведовать кафедрой математики и астрономии, с которой была связана должность директора Геттингенской обсерватории. Этот пост Гаусс не покидал до конца жизни. Результаты своих исследований по астрономии Гаусс объединил в фундаментальном труде «Теория движения небесных тел».


------------------------------------------


В конце XVIII-начале XIX в. было получено геометрическое истолкование комплексных чисел. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число z = a + bi точкой M(a,b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами. Вектор  можно задавать не только его координатами a и b, но также длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом a = r cos φ, b = r sin φ и число z принимает вид z = r(cos φ + i sin φ), который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают |z|. Число φ называют аргументом z и обозначают Arg z. Заметим, что если z=0, значение Arg z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде z = re (показательная форма комплексного числа).

Очень удобно выполнять умножение комплексных чисел в показательной форме. Оно производится по формуле  т.е. при умножении модули перемножаются, а аргументы складываются.

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые. Н. И. Мусхелишвили занимался ее приложениями к теории упругости, М. В. Келдыш и М. А. Лаврентьев – к аэро- и гидродинамике, Н. Н. Боголюбов и B. C. Владимиров – к проблемам квантовой теории поля.


КОНИЧЕСКИЕ СЕЧЕНИЯ


Конические сечения – кривые, получающиеся при сечении кругового конуса (точнее – конической поверхности) плоскостью, не проходящей через его вершину.


Получающиеся при этом ограниченные фигуры (рис. 1) оказываются эллипсами, а неограниченные – гиперболами (если секущая плоскость пересекает обе полости конуса) или параболами (если секущая плоскость пересекается лишь с одной из его полостей). Все виды конических сечений легко получить с помощью карманного фонарика, направляя его под разными углами на ровную площадку. Правда, при этом у гиперболы мы увидим лишь одну ветвь. Для того чтобы увидеть вторую, нужно ось фонарика повернуть на 180°.