на рис. 9.
Рис. 7
Рис. 8
Рис. 9
ЛЕТНИЕ ФИЗИКО-МАТЕМАТИЧЕСКИЕ ШКОЛЫ
Во время летних каникул тысячи старшеклассников в разных краях и областях нашей страны вновь садятся за парты в летних физико-математических школах. Эти школы создаются при высших учебных заведениях и научно-исследовательских институтах. Ребята, которые интересуются физикой и математикой, могут углубить и расширить свои знания, познакомиться с единомышленниками – ровесниками, студентами, учеными.
В большинстве летних школ учебный процесс строится из лекций и семинаров, но иногда (например, в школах при Ленинградском и Красноярском университетах) организуются математические кружки и факультативы. Обычно в летних школах изучают традиционные разделы математики, не нашедшие достаточного отражения в программе общеобразовательной школы. А в Малой Академии наук в Крыму и Всесоюзной летней школе юных программистов при Вычислительном центре АН Сибирского отделения АН СССР впервые начато обучение программированию и вычислительной математике. В программе летних школ важное место занимает не только решение задач на семинарах и в кружках, но и подготовка к олимпиадам, специальным практикумам. Популярны «математические бои», конкурсы по решению задач.
Поскольку летние школы организуются крупными научными центрами и высшими учебными заведениями, то к преподаванию привлекаются ведущие специалисты. Здесь школьники могут поговорить в непринужденной атмосфере с учеными, знакомыми по книгам и телепередачам. Ученики летних физико-математических школ часто бывают на экскурсиях в научных центрах и высших учебных заведениях. Близость крупных научных центров позволяет ребятам быть в курсе современных направлений научного прогресса. Летние физико-математические школы различны и по содержанию занятий, и по принципам организации, однако во всех школах создается высокоинтеллектуальная, творческая атмосфера, осуществляется программа обучения, в которой органично соединены и занятия, и культурный досуг, и отдых, и общение. Особенно полезно общение сотрудников и учеников школы. Обычно преподаватели школ – молодые ученые, студенты – совмещают учебные и воспитательные обязанности. Они легко находят общий язык с воспитанниками, и общение в учебе не отделено от дружеских взаимоотношений. В круг интересов входят поэтому не только наука, но и вопросы общественной жизни, культуры.
В Красноярской летней школе старшеклассники занимаются математикой, физикой, химией.
Юность неразлучна со спортом, и спортивные соревнования, секции, туристские походы и, конечно, утренняя зарядка обеспечивают ребятам здоровье.
Во многих летних школах установились свои традиции: например, знаменитый «симпозиум фантастических проектов» в летней школе при Новосибирском государственном университете, спортивно-математические состязания и празднование Дня математика в Красноярской летней школе, математический КВН в летней школе города Батуми, общий сбор Малой Академии наук «Искатель» в Крыму.
Своим успехом летние школы во многом обязаны самостоятельности и увлеченности школьников. Деятельное участие ребят в жизни всего коллектива, дружба с молодыми сотрудниками приводят часто к тому, что недавние выпускники школ, а затем студенты и аспиранты вузов физико-математического профиля возвращаются в свою летнюю школу уже в качестве преподавателей и воспитателей.
Летние школы тесно связаны с другими формами внеклассной работы по математике - с научными обществами учащихся, заочными математическими школами. И для многих старшеклассников учеба в летней школе становится первым шагом на пути к овладению будущей профессией.
ЛИНЕЙНАЯ ФУНКЦИЯ
Линейная функция – двучлен первой степени, т.е. функция вида y=ax+b. Линейная функция определена на всей числовой прямой. Функция называется линейной потому, что ее график есть прямая линия.
Рассмотрим два значения аргумента x1 и x2, им соответствуют значения линейной функции у1 = ах1 + b и у2 = ах2 + b. Изменение аргумента на величину у2 = ах2 + b вызывает изменение функции на величину у2 - y1 = а(х2 — х1), при этом отношение изменения функции к изменению аргумента равно a:
(y2 - y1)/(x2 - x1) = a.
Таким образом, у линейной функции изменение функции пропорционально изменению аргумента, и это есть характеристическое свойство линейной функции. Поэтому с помощью линейной функции описываются пропорциональные зависимости.
Например, цена p купленного отреза ткани пропорциональна его длине l, а именно р = kl (здесь k - цена одного метра ткани); при равномерном движении с постоянной скоростью v пройденный путь s пропорционален времени t и выражается формулой s = vt, т.е. s – линейная функция t.
Пример линейной функции дает зависимость между различными шкалами температур. Абсолютная температура tK (по Кельвину) связана с температурой tC на шкале Цельсия формулой tC = tK + 273°, а переход от температуры по Фаренгейту (шкале, принятой до сих пор в Англии и США) /ф к температуре на шкале Цельсия tc выражается такой линейной функцией: tФ = 1,8tC + 32° (на шкале Цельсия промежуток между точкой замерзания и точкой кипения разделен на 100 частей, а на шкале Фаренгейта – на 180, и 0°С соответствует 32°Ф).
Частный случай линейной функции – прямая пропорциональная зависимость y=ax, т.е. линейная функция при b=0. График этой функции есть прямая, проходящая через начало координат (рис. 1). Число a называется угловым коэффициентом прямой и равен тангенсу угла α, образованного прямой с положительным направлением оси Ox.
Рис. 1
График линейной функции y=ax+b (b≠0) получается из графика функции у = ах параллельным переносом на b единиц вверх при b > 0 и на b единиц вниз при b < 0 (рис. 2). Поскольку прямая определяется своими двумя точками, то для построения графика линейной функции достаточно найти координаты лишь двух ее точек.
Рис. 2
Линейная функция простейшая и, можно сказать, важнейшая среди всех функций. Многие физические законы выражаются с помощью линейной функции (мы уже говорили о пройденном пути при постоянной скорости), но важно то, что целый ряд сложных нелинейных зависимостей «в малом» можно считать линейными. Например, по закону Гука при небольших удлинениях (и только при них) сила упругости F пропорциональна величине x - удлинению пружины: F = -kх. Другой пример: напряжение V по закону Ома линейно зависит от силы тока J, именно V= RJ (здесь R – сопротивление), однако этот закон также справедлив лишь при не очень больших изменениях силы тока.
ЛИНЕЙНОЕ УРАВНЕНИЕ
Линейным уравнением с неизвестными x1,x2,...,xn называют уравнение вида
a1x1+a2x2+...+anxn=b; (1)
числа a1,a2,...,an называют коэффициентами при неизвестных, число b – свободным членом уравнения.
Линейные уравнения с одним неизвестным умели решать еще в Древнем Вавилоне и в Египте более чем 4 тыс. лет назад. Приведем, например, задачу из папируса Ринда (его называют также папирусом Ахмеса), хранящегося в Британском музее и относящегося к периоду 2000-1700 гг. до н.э.: «Найти число, если известно, что от прибавления к нему 2/3 его и вычитания от полученной суммы ее трети получается число 10». Решение этой задачи сводится к решению линейного уравнения
x + 2/3x + -1/3(x + 2/3x) = 10, откуда x=9.
Приведем также задачу Метродора, о жизни которого ничего не известно, кроме того, что он автор интересных задач, составленных в стихах.
Здесь погребен Диофант, и камень могильный
При счете искусном расскажет нам,
Сколь долог был его век.
Велением бога он мальчиком был шестую часть своей жизни;
В двенадцатой части затем прошла его светлая юность.
Седьмую часть жизни прибавим – перед нами очаг Гименея.
Пять лет протекли; и прислал Гименей ему сына.
Но горе ребенку! Едва половину он прожил
Тех лет, что отец, как скончался несчастный.
Четыре года страдал Диофант от утраты такой тяжелой
И умер, прожив для науки. Скажи мне,
Скольких лет достигнув, смерть восприял Диофант?
Решая линейное уравнение
1/6 x + 1/12 x + 1/7 x + 5 + 1/2 x + 4 = x,
находим, что x=84 – столько лет прожил Диофант.
Сам Диофант много внимания уделял неопределенным уравнениям (так называют алгебраические уравнения или системы таких уравнений с двумя и большим числом неизвестных с целыми коэффициентами, для которых разыскиваются целые или рациональные решения; число неизвестных должно быть больше числа уравнений). Эти уравнения называются диофантовыми уравнениями. Правда, Диофант, живший на рубеже II-III вв., в основном занимался неопределенными уравнениями более высоких степеней.
Систему алгебраических уравнений, каждое из которых имеет вид (1), называют линейной системой. Коэффициенты уравнений, входящих в систему, нумеруют обычно двумя индексами, первый из которых – номер уравнения, а второй (как и в (1)) – номер неизвестного. Например, систему m уравнений с n неизвестными записывают в виде
(2)
Рассмотрим систему двух линейных уравнений с двумя неизвестными:
(3)
Умножим первое уравнение системы (3) на a22 и вычтем из полученного уравнения второе, умноженное на a12; аналогично умножим второе уравнение системы (3) на a11 и вычтем из полученного уравнения первое, умноженное на a21. После этого получится система:
(4)
которая есть следствие системы (3). Систему (4) можно записать в виде