нов etc., каковые понятия, законы etc. (мышление, наука - «логическая идея») и охватывают условно, приблизительно универсальную закономерность вечно движущейся и развивающейся природы».
Математика не является исключением из всех областей знания – в ней также образуются понятия, возникающие из практических ситуаций и последующих абстрагирований; она позволяет изучать действительность также приближенно. Но при этом следует иметь в виду, что математика изучает не вещи реального мира, а абстрактные понятия и что логические ее выводы абсолютно строги и точны. Ее приближенность носит не внутренний характер, а связана с составлением математической модели явления. Заметим еще, что правила математики не обладают абсолютной применимостью, для них также существует ограниченная область применения, где они господствуют безраздельно. Поясним высказанную мысль примером: оказывается, что два и два не всегда равно четырем. Известно, что при смешивании 2 л спирта и 2 л воды получается меньше 4 л смеси. В этой смеси молекулы располагаются компактнее, и объем смеси оказывается меньше суммы объемов составляющих компонентов. Правило сложения арифметики нарушается. Можно еще привести примеры, в которых нарушаются другие истины арифметики, например при сложении некоторых объектов оказывается, что сумма зависит от порядка суммирования.
Советские математики рассматривают математические понятия не как создание чистого разума, а как абстракции от реально существующих вещей, явлений, процессов или же абстракции от уже сложившихся абстракций (абстракции высших порядков). В «Диалектике природы» Ф. Энгельс писал, что «... вся так называемая чистая математика занимается абстракциями... все ее величины суть, строго говоря, воображаемые величины...» Эти слова достаточно четко отражают мнение одного из основоположников марксистской философии о роли абстракций в математике. Нам только следует добавить, что все эти «воображаемые величины» берутся из реальной действительности, а не конструируются произвольно, свободным полетом мысли. Именно так вошло во всеобщее употребление понятие числа. Сначала это были числа в пределах единиц, и притом только целые положительные числа. Затем опыт заставил расширить арсенал чисел до десятков и сотен. Представление о неограниченности ряда целых чисел родилось уже в исторически близкую нам эпоху: Архимед в книге «Псаммит» («Исчисление песчинок») показал, как можно конструировать числа еще большие, чем заданные. Одновременно из практических нужд родилось понятие дробных чисел. Вычисления, связанные с простейшими геометрическими фигурами, привели человечество к новым числам – иррациональным. Так постепенно формировалось представление о множестве всех действительных чисел.
Тот же путь можно проследить для любых других понятий математики. Все они возникли из практических потребностей и постепенно сформировались в абстрактные понятия. При этом всегда следует помнить прекрасные слова Ф. Энгельса: «... чистая математика имеет значение, независимое от особого опыта каждой отдельной личности... Но совершенно неверно, будто в чистой математике разум имеет дело только с продуктами собственного творчества и воображения. Понятия числа и фигуры взяты не откуда-нибудь, а только из действительного мира. Десять пальцев, на которых люди научились считать, т.е. производить первую арифметическую операцию, представляют собой все, что угодно, только не продукт свободного творчества разума. Чтобы считать, надо иметь не только предметы, подлежащие счету, но обладать уже и способностью отвлекаться при рассмотрении этих предметов от всех прочих свойств, кроме числа, а эта способность есть результат долгого исторического развития, опирающегося на опыт. Как понятие числа, так и понятие фигуры заимствовано исключительно из внешнего мира, а не возникло в голове из чистого мышления. Должны были существовать вещи, имеющие определенную форму, и эти формы должны были подвергаться сравнению, прежде чем можно было прийти к понятию фигуры».
ДАВИД ГИЛЬБЕРТ
(1862-1943)
Летом 1900 г. математики собрались на свой второй Международный конгресс в Париже. Немецкий математик, профессор Геттингенского университета, Д. Гильберт был приглашен сделать один из основных докладов. Крупнейший математик мира, он прославился своими работами по алгебре и теории чисел, а незадолго перед конгрессом решительно перестроил аксиоматику евклидовой геометрии с учетом того нового, что узнали об аксиоматическом методе математики в XIX в. из его книги «Основания геометрии». После долгих колебаний Гильберт выбрал необычную форму доклада. Он решил сформулировать те проблемы, которые, по его мнению, должны определять развитие математики в наступающем веке.
Среди 23 проблем, поставленных Гильбертом, были как конкретные задачи, так и общие постановки задач, намечавшие пути развития больших направлений в математике. Так, третья проблема, решенная вскоре, ставила вопрос об эквивалентности понятий равновеликости и равносоставленности; десятая проблема была посвящена вопросам разрешимости диофантовых уравнений; в седьмой проблеме спрашивалось, будут ли рациональны числа 2√2 и eπ; двадцать третья проблема намечала пути развития вариационного исчисления, которое во второй половине XX в. выросло от области математики, занимающейся экстремальными геометрическими задачами, до большой современной науки – теории оптимального управления.
Исследования Гильберта оказали большое влияние на развитие многих отраслей математики, его деятельность в Геттингенском университете в значительной мере содействовала тому, что Геттинген в первой трети XX в. становится одним из мировых центров математической мысли.
После конгресса интересы ученого обращаются к математическому анализу и, как всегда, он находит совершенно неожиданный ход: функции у него оказываются точками бесконечномерного пространства и аналитические результаты получаются на чисто геометрическом языке. Он решает знаменитую проблему Варинга из теории чисел, проблему возможности представления любого натурального числа в виде суммы степеней чисел: четырех квадратов, девяти кубов, девятнадцати четвертых степеней и т.д. К этому времени уже была доказана возможность представления числа в виде суммы четырех квадратов.
Значительные исследования были проведены Гильбертом в теории бесконечных множеств, где он также применяет аксиоматический метод построения теории.
В 1930 г., как и полагалось немецкому профессору в 68 лет, Гильберт уходит в отставку.
Но жизнь готовила Гильберту трагические последние годы. После прихода гитлеровцев к власти в Германии ученый до конца жизни прожил в Геттингене в стороне от университетских дел. «Математика в Геттингене? Да она просто не существует больше» - так ответил Гильберт на вопрос нацистского министра.
ИВАН ГЕОРГИЕВИЧ ПЕТРОВСКИЙ
(1901-1973)
И. Г. Петровский – советский математик, крупный государственный и общественный деятель. Герой Социалистического Труда (1969), лауреат Государственных премий (1946, 1952), академик (1946), член Президиума Верховного Совета СССР (1966-1973).
В 1927 г. И. Г. Петровский окончил Московский государственный университет, с 1933 г. он был профессором механико-математического факультета МГУ, с 1950г. заведовал кафедрой дифференциальных уравнений, а с 1951 г. и до конца своей жизни был ректором Московского университета. В 1946 г. он был избран действительным членом АН СССР.
И. Г. Петровский получил фундаментальные научные результаты в самых различных областях математики: в теории уравнений с частными производными, в алгебраической геометрии, теории вероятностей, теории обыкновенных дифференциальных уравнений, математической физике.
И. Г. Петровский – создатель теории систем уравнений с частными производными. До его работ основным объектом изучения теории уравнений с частными производными были конкретные уравнения, к которым приводили физические задачи, а также уравнения второго порядка трех основных типов: эллиптического, параболического и гиперболического. И. Г. Петровский выделил и изучил три широких класса систем уравнений с частными производными, которые позднее вошли в науку под названием эллиптических, параболических и гиперболических по Петровскому систем.
В 1937 г. И. Г. Петровский дал наиболее полное и исчерпывающее решение вопроса, поставленного в 19-й проблеме Гильберта – вопроса об описании класса дифференциальных уравнений и систем, все достаточно гладкие решения которых являются аналитическими функциями. Оказалось, что таким свойством обладают эллиптические по Петровскому системы. Это – одна из 23 проблем, сформулированных Д. Гильбертом на Международном математическом конгрессе в 1900 г., они рассматривались как важнейшие задачи, стоящие перед математиками XX в.
В 1933 г. ученый выполнил работу по топологии действительных алгебраических кривых. В ней были даны ответы на вопросы, поставленные в 16-й проблеме Гильберта.
Большое влияние на развитие теории вероятностей оказали работы И. Г. Петровского, выполненные в 30-е гг. Исключительное значение имеют не только результаты этих работ, но и методы исследования, которые были в них предложены.
Будучи ректором МГУ, И. Г. Петровский много сделал для развития научных исследований и улучшения подготовки специалистов в университетах страны.
Он написал три учебника для студентов вузов: «Лекции по теории обыкновенных дифференциальных уравнений», «Лекции по теории интегральных уравнений» и «Лекции об уравнениях с частными производными».
Большое внимание ученый уделял преподаванию математики в средней школе. По его инициативе были организованы курсы повышения квалификации учителей школ РСФСР при МГУ, он принимал участие в организации заочной математической школы и школы-интерната при МГУ.
------------------------------------------
Рассмотрим, имеются ли в науке понятия, которые созданы без связи с прошлым прогрессом науки и текущим прогрессом практики. Мы прекрасно знаем, что научному математическому творчеству предшествует изучение многих предметов в школе, вузе, чтение книг, статей, беседы со специалистами как в собственной области, так и в других областях знания. Математик живет в обществе, и из книг, по радио, из других источников он узнает о проблемах, возникающих в науке, инженерном деле, общественной жизни. К тому же мышление исследователя находится под воздействием всей предшествовавшей эволюции научной мысли. Поэтому оно оказывается подготовленным к решению определенных проблем, необходимых для прогресса науки. Вот почему ученый не может выдвигать проблемы по произволу, по прихоти, а должен создавать математические понятия и теории, которые были бы ценны для науки, для других исследователей, для человечества. А ведь математические теории сохраняют свое значение в условиях различных общественных формаций и исторических эпох. К тому же нередко одинаковые идеи возникают у ученых, которые никак не связаны между собой. Это является дополнительным аргументом против тех, кто придерживается концепции свободного творчества математических понятий.
МСТИСЛАВ ВСЕВОЛОДОВИЧ КЕЛДЫШ
(1911-1978)
М. В. Келдыш – замечательный советский ученый и организатор науки, трижды Герой Социалистического Труда (1956, 1961, 1971), лауреат Ленинской (1957) и Государственных (1942, 1946) премий, академик (1946), президент Академии наук СССР (1961-1975), автор глубоких исследований в области математики, механики, техники.
Международное признание Келдышу как математику принесли его работы по теории функций комплексного переменного и ее приложений, в первую очередь по представлению аналитических функций рядами полиномов, где ему принадлежит одна из основных теорем. Широко известны также его работы по теории потенциала и гармоническим функциям, по дифференциальным уравнениям и вычислительной математике.
Многие теоретические исследования М. В. Келдыша были выполнены в Центральном аэрогидродинамическом институте им. Н. Е. Жуковского. Вместе с М. А. Лаврентьевым молодой ученый занимался исследованием задач аэрогидродинамики методами теории функций комплексного переменного. В частности, они первыми построили теорию движения крыла под поверхностью жидкости, впервые строго доказали, что на определенных режимах колебания крыла создают тянущую силу, создали теорию удара о поверхность воды.
Большой цикл работ Келдыша посвящен колебаниям авиаконструкций. Вплотную с явлением флаттера (колебаний частей самолета, приводящих к его гибели) авиаконструкторы столкнулись, когда от тихоходных бипланов с их жестко скрепленной коробкой крыльев стали переходить к более быстроходным монопланам. К 1940 г. Келдыш разработал эффективные способы расчета самолета на флаттер, указал методы балансировки, которые предотвращали гибель машин. Эти работы ученого сыграли заметную роль в создании советского воздушного превосходства во время Великой Отечественной войны.
Чтобы построить строгую теорию колебаний сложных систем с несимметричными прямыми и обратными связями между их частями, ему пришлось разработать новую главу функционального анализа, ее теперь называют теорией пучков Келдыша.
Еще одним из направлений работ М. В. Келдыша были вычислительные методы сверхзвуковой газовой динамики не только в связи с приложениями к задачам аэродинамики, но и к течениям в соплах, и к движениям сплошной среды (газообразной, жидкой или твердой) под действием взрыва.
С 1946 г. Келдыш начинает работать над ракетными системами. Вместе с И. В. Курчатовым и С. П. Королевым ученый участвовал в создании ракетно-ядерного щита нашей Родины. В последующие годы М. В. Келдыш вместе с С. П. Королевым стал одним из инициаторов работ по освоению космоса.
Он стоял у истоков прикладной небесной механики. Раньше ученые наблюдали небесные тела и описывали их движение. С началом космической эры потребовалось проектировать траектории полетов космических аппаратов вокруг Земли, к Луне и планетам Солнечной системы, уточнять их фактическую трассу и затем корректировать их движение. Эти задачи решались под руководством М. В. Келдыша и при его активном участии.
М. В. Келдыш был основателем Института прикладной математики АН СССР, носящего ныне его имя. С деятельностью этого института во многом связано становление современной вычислительной математики в нашей стране. Возглавляя Академию наук СССР, М. В. Келдыш внес выдающийся вклад в обеспечение развития многих фундаментальных направлений советской науки.
------------------------------------------
Итак, мы рассказали, что же входит в понятие «математика». Но существует еще и такое понятие, как прикладная математика. Под ним понимают совокупность всех математических методов и дисциплин, находящих применения за пределами математики. В древности геометрия и арифметика представляли всю математику и, поскольку та и другая находили многочисленные применения при торговых обменах, измерении площадей и объемов, в вопросах навигации, вся математика была не только теоретической, но и прикладной. Позднее, в Древней Греции, возникло разделение на математику и на математику прикладную. Однако все выдающиеся математики занимались и применениями, а не только чисто теоретическими исследованиями.
Дальнейшее развитие математики было непрерывно связано с прогрессом естествознания, техники, с появлением новых общественных потребностей. К концу XVIII в. возникла необходимость (в первую очередь в связи с проблемами навигации и артиллерии) создания математической теории движения. Это сделали в своих работах Г. В. Лейбниц и И. Ньютон. Прикладная математика пополнилась новым очень мощным методом исследования – математическим анализом. Почти одновременно потребности демографии, страхования привели к формированию начал теории вероятностей (см. Вероятностей теория). XVIII и XIX вв. расширили содержание прикладной математики, добавив в нее теорию дифференциальных уравнений обыкновенных и с частными производными, уравнения математической физики, элементы математической статистики, дифференциальную геометрию. XX в. принес новые методы математического исследования практических задач: теорию случайных процессов, теорию графов, функциональный анализ, оптимальное управление, линейное и нелинейное программирование. Более того, выяснилось, что теория чисел и абстрактная алгебра нашли неожиданные применения к задачам физики. В результате стало складываться убеждение, что прикладной математики как отдельной дисциплины не существует и вся математика может считаться прикладной. Пожалуй, нужно говорить не о том, что математика бывает прикладная и теоретическая, а о том, что математики разделяются на прикладников и теоретиков. Для одних математика является методом познания окружающего мира и происходящих в нем явлений, именно для этой цели ученый развивает и расширяет математическое знание. Для других математика сама по себе представляет целый мир, достойный изучения и развития. Для прогресса науки нужны ученые и того, и другого плана.
Математика, прежде чем изучать своими методами какое-нибудь явление, создает его математическую модель, т.е. перечисляет все те особенности явления, которые будут приниматься во внимание. Модель принуждает исследователя выбирать те математические средства, которые позволят вполне адекватно передать особенности изучаемого явления и его эволюции. В качестве примера возьмем модель планетной системы: Солнце и планеты рассматриваются как материальные точки с соответствующими массами. Взаимодействие каждых двух точек определяется силой притяжения между ними
,
где m1 и m2 – массы взаимодействующих точек, r – расстояние между ними, а f - постоянная тяготения. Несмотря на всю простоту этой модели, она в течение вот уже трехсот лет с огромной точностью передает особенности движения планет Солнечной системы.
Конечно, каждая модель огрубляет действительность, и задача исследователя состоит в первую очередь в том, чтобы предложить модель, передающую, с одной стороны, наиболее полно фактическую сторону дела (как принято говорить, ее физические особенности), а с другой – дающую значительное приближение к действительности. Разумеется, для одного и того же явления можно предложить несколько математических моделей. Все они имеют право на существование до тех пор, пока не начнет сказываться существенное расхождение модели и действительности.