Основным предметом математической логики, таким образом, является построение и изучение формальных систем. Центральным результатом здесь является доказанная в 1931 г. австрийским математиком К. Геделем теорема о неполноте, утверждающая, что для любой «достаточно разумной» формальной системы существуют неразрешимые в ней предложения, т.е. такие формулы A, что ни сама формула A, ни ее отрицание не имеют вывода. Если отождествить формальную систему с соответствующей областью математики, то можно сказать, что в любой «достаточно разумной» области математики есть утверждения, которые нельзя ни доказать, ни опровергнуть. Мы не можем здесь точно сказать, что именно требуется от «достаточно разумной» формальной системы; отметим лишь, что большинство формальных систем (в том числе формальная арифметика и аксиоматическая теория множеств) удовлетворяют этим требованиям. На примере теоремы о неполноте мы видим, какую пользу приносит построение формальной системы: мы получаем возможность доказать, что какие-то утверждения недоказуемы!
Изучение формальных систем привело к возникновению многих важных направлений в современной математической логике. Назовем некоторые из них. Теория моделей исследует вопрос о том, как можно придать «смысл» выражениям формальных языков и что при этом получается. Теория доказательств изучает свойства выводов в формальных системах. Важнейшим разделом логики, который сейчас уже можно рассматривать как самостоятельную дисциплину, является теория алгоритмов.
Многие знаки, придуманные логиками для построения формальных систем, постепенно вошли в общее употребление. К ним относятся логические связки ∧ (конъюнкция, «и»), ∨ (дизъюнкция, «или»), (импликация, «если... то...»), ¬ (отрицание, «неверно, что») и так называемые кванторы ∀ (всеобщности, «для всех») и ∃ (существования, «существует»). Смысл логических связок, помимо указанных в скобках названий, разъясняется так называемыми таблицами истинности. Эти таблицы показывают, будет ли сложное утверждение, составленное с помощью логических связок из простых, истинно (И) или ложно (Л) в зависимости от истинности его составных частей. Приведем их.
A | B | A ∧ B | A ∨ B | ¬A | |
И | И | И | И | И | Л |
И | Л | Л | И | Л | Л |
Л | И | Л | И | И | И |
Л | Л | Л | Л | И | И |
Например, пятый столбец показывает, что утверждение может быть ложно, только если A истинно, а B ложно. С помощью этих таблиц можно составить таблицу истинности и для более сложных утверждений, например для утверждения .
A | B | A ∨ B | ¬A | ||
И | И | И | Л | Л | И |
И | Л | И | Л | Л | И |
Л | И | И | И | И | И |
Л | Л | Л | И | Л | И |
Составив ее, мы увидим, что это утверждение (шестой столбец) всегда истинно, независимо от истинности утверждений A и B. Это не удивительно – ведь его можно прочитать так: «Если верно или A, или B и A неверно, то верно B». Как говорят, это утверждение является логическим законом, или тавтологией. Именно с таких утверждений мы начали обсуждение предмета математической логики.
Смысл кванторов ∀ и ∃ можно объяснить так. Если A(x) – некоторое утверждение, истинность которого зависит от значения переменной x (например, утверждение «x - четное число»), то утверждение ∀xA(x) гласит, что A(x) верно при всех значениях x, а утверждение ∃xA(x) означает, что найдется такое x, при котором A(x) верно. (В нашем примере первое из этих утверждений ложно, а второе – истинно.) Как и логические связки, кванторы можно использовать для записи логических законов. Например, оба утверждения, приведенные нами в начале статьи в качестве примеров, частные случаи закона
,
которые получаются, если подставить вместо A(x) утверждение «x – ворона», а вместо B(x) - «x – черная» или вместо A(x) - «x – совершенные», а вместо B(x) - «x – четные».
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
Математическая статистика – наука, изучающая методы обработки результатов наблюдений. Приведем примеры. Из кипы хлопка наугад вытащены пучки и измерены длины попавших в них волокон. Результаты первых 28 замеров (в см) оказались следующими: 2,10; 2,23; 2,14; 2,16; 2,56; 2,05; 2,20; 2,34; 2,18; 1,95; 2,21; 2,46; 2,28; 1,95; 2,54; 2,12; 2,05; 2,15; 2,18; 2,21; 2,34; 2,28; 2,34; 2,20; 2,42; 2,55; 2,12; 2,27. Запись результатов наблюдений в таком виде мало наглядна, занимает много места, и из нее трудно делать выводы. Обычно стремятся данные наблюдений сделать более удобными для восприятия и для последующей обработки. Это особенно важно, когда число наблюдений велико и достигает многих сотен, а то и тысяч. Для этого результаты наблюдений сводят в таблицы. Весь интервал возможных значений разбивают на части (как правило, равной длины) и подсчитывают число наблюдений, попавших в каждый из отрезков. В табл. 1 приведены данные о надое 100 коров. Надой указан в тысячах литров; величина промежутка разбиения – 600 л. Уже беглый взгляд на таблицу показывает, что мало и коров с малым удоем, и коров-рекордисток.
Таблица 1 Группы по надою, тыс.л. | Число коров |
1,6-2,2 | 4 |
2,2-2,8 | 14 |
2,8-3,4 | 17 |
3,4-4,0 | 37 |
4,0-4,6 | 15 |
4,6-5,2 | 6 |
5,2-5,8 | 4 |
5,8-6,2 | 3 |
Наибольшее число коров оказывается в средней части таблицы.
На втором примере мы будем изучать промежутки между временами прибытия судов в морской порт. За некоторый срок прибыло 185 судов. Данные сведены в табл. 2.
Таблица 2 Промежуток между прибытиями, мин | 0-4 | 4-8 | 8-12 | 12-16 | 16-20 | 20-24 | 24-28 | 28-32 |
Число случаев | 67 | 43 | 30 | 18 | 11 | 7 | 5 | 4 |
Наблюдения показывают, что, как правило, основная масса судов прибывает через небольшие промежутки времени. На самом деле таблицы позволяют получить большее: выявить закономерности, свойственные табличным данным.
Итак, таблицы используют для того, чтобы установить закономерности появления различных возможных значений наблюдаемой величины; для проверки неизменности условий испытаний; для оценки правильности тех или иных статистических гипотез; для оценки наличия так называемых корреляционных зависимостей между переменными, которые наблюдаются на опыте. В наши дни результаты наблюдений используют для статистической оценки качества изготовленной продукции и для управления качеством в процессе производства.
Сказанное нуждается в пояснениях.
Для решения первой задачи строят гистограмму. По оси абсцисс откладывают значения наблюдаемой величины, а по оси ординат – ее частоты в каждом из промежутков, т.е. отношения числа наблюдений, попавших в данный промежуток времени, к числу всех наблюдений, деленные на длину промежутков. В результате получаем ступенчатую линию. Заметим, что площадь, заключенная под всеми прямоугольниками для любой гистограммы, равна 1. Гистограмму нашего примера хорошо приближает функция y = 1/8,32e-x/8,32, площадь под которой (в положительной части оси абсцисс) также равна 1.
И на производстве, и в научных экспериментах бывает очень важно проверить, насколько неизменны условия наблюдения. Так, например, на технологической линии была изменена какая-то операция. Спрашивается, не сказалась ли эта замена на качестве продукции. Или представим себе, что производится наблюдение за интенсивностью космического излучения в двух точках земной поверхности на одной широте и на одинаковой высоте от земной поверхности, но на разной долготе. Необходимо выяснить, одинакова ли интенсивность излучения. Для проверки производятся две серии наблюдений (в одних и других условиях) и сравниваются полученные гистограммы. Близость гистограмм будет подтверждать нашу гипотезу: интенсивность солнечного излучения не зависит от долготы.
Статистические гипотезы могут быть самыми разнообразными, например: лекарство A не оказывает положительного воздействия на больных болезнью B; сорт пшеницы A урожайнее сорта B и т.д. Математическая статистика уделяет большое внимание разработке методов, позволяющих решать вопросы о правильности или ложности статистических гипотез.