Энциклопедический словарь юного математика — страница 53 из 95

s = 1 (точка A0 на рис. 2) потребления совсем нет – вся продукция идет на накопление оборудования. Уменьшим теперь норму накопления s. Тогда потребление c (длина AB) будет уже ненулевым, хотя темп роста λ экономики (угол наклона прямой OB) остается тем же. В точке с ординатой R*, для которой касательная к кривой y = f(R) параллельна прямой y = λR потребление c* максимально. Ей соответствует кривая семейства y = s*f(R) с некоторой нормой накопления s*, называемой «золотой нормой накопления».

Рис. 2


ЛЕОНИД ВИТАЛЬЕВИЧ КАНТОРОВИЧ

(1912-1986)

Л. В. Канторович – советский математик и экономист, создатель линейного программирования и теории оптимального планирования социалистической экономики, академик, лауреат Нобелевской премии.

Л. В. Канторович родился в Петербурге, в семье врача. Его способности проявились необычайно рано. Уже в 4 гола он свободно оперировал многозначными числами, в семилетнем возрасте освоил курс химии по учебнику старшего брата. В 14 лет он стал студентом Петербургского университета. К моменту окончания университета, в 1930 г., Л. В. Канторович уже известный ученый, автор десятка работ, опубликованных в ведущих международных математических журналах, а в 20 лет – профессор математики.

В 1935 г. ученый ввел и изучил класс функциональных пространств, в которых для некоторого набора их элементов определено отношение порядка. Теория таких пространств их называют пространствами Канторовича, или K-пространствами, является одним из основных разделов функционального анализа. Недавние работы, связанные с решением проблемы континуума, определили место K-пространств в ряду наиболее фундаментальных математических структур.

Л. В. Канторовича отличала поразительная способность в частной задаче увидеть ядро проблемы и, создав теорию, дать общий метод решения широкого класса подобных задач. Особенно ярко это раскрылось в его работах по вычислительной математике и математической экономике.

В начале 30-х гг. Л. В. Канторович одним из первых крупных ученых заинтересовался вычислительной математикой. Современный облик этой науки во многом был определен его трудами. Среди них основополагающая и ставшая классической монография «Приближенные методы высшего анализа»; вычислительные методы, носящие его имя; общая теория приближенных методов, построенная на базе функционального анализа (Государственная премия 1949 г.); работы по автоматическому программированию, выполненные на заре компьютерной эры и предвосхитившие многие современные идеи, наконец, ряд изобретений в области вычислительной техники.

В 1939 г. в Ленинграде вышла небольшая брошюра «Математические методы организации и планирования производства», в которой фактически содержался новый раздел прикладной математики, впоследствии названный линейным программированием (см. Геометрия). Поводом к ее написанию послужила конкретная производственная задача. Осознав ключевое значение понятий вариантности и оптимальности в социалистической экономике, таких важнейших показателей, как цена, рента, эффективность, он приступает к разработке теории оптимального планирования, удостоенной впоследствии Ленинской (1965) и Нобелевской (1975) премий.

Книга «Экономический расчет наилучшего использования ресурсов», излагающая эту теорию, была написана в условиях ленинградской блокады и закончена уже в 1942 г.

Понимая исключительную важность этих исследований, ученый настойчиво добивался практического использования их результатов. Однако работа была опубликована только в 1959 г. и даже тогда подвергалась нападкам ортодоксальных политэкономов. Книга Л. В. Канторовича сформировала взгляды целого поколения советских экономистов. Многие идеи, впервые высказанные там, реализуются в ходе перестройки.

Международный научный авторитет ученого был очень высок. Л. В. Канторович член многих зарубежных академий, почетный доктор многих университетов мира.


------------------------------------------


Нелегкой проблемой в математической экономике является сопоставление теории и практики: экономические показатели измерять крайне трудно – измеряются они не на лабораторных установках, наблюдения удается проводить крайне редко (вспомните переписи!), проводятся они в разных условиях и содержат массу неточностей. Поэтому здесь трудно использовать опыт измерений, накопленный в других науках, и требуется разработка специальных методов.

Развитие математической экономики вызвало появление многих математических теорий, объединяемых названием «математическое программирование» (о линейном программировании можно прочитать в статье «Геометрия»).

Вопросы применения математических методов в экономике были разработаны в трудах советского математика Л. В. Канторовича, которые были отмечены Ленинской и Нобелевской премиями.


МАТЕМАТИЧЕСКИЕ ОЛИМПИАДЫ ШКОЛЬНИКОВ


Из глубины веков ведут свою историю математические турниры и соревнования; например, с такими турнирами связана драматическая история открытия формулы Тарталья-Кардано для решения кубического уравнения (см. Алгебраические уравнения).


Первенство в регулярном проведении соревнований школьников, по-видимому, принадлежит Венгрии, где математические олимпиады устраивают с 1894 г. (сборник задач этих олимпиад издан на русском языке в 1976 г. в издательстве «Мир» в серии «Задачи и олимпиады»). С 1894 г. в России выходил журнал «Вестник опытной физики и элементарной математики», где учащимся и другим читателям предлагались математические задачи «на конкурс». Можно сказать, что это были заочные олимпиады.

А как быть тем школьникам наших дней, которые любят решать задачи, любят соревноваться, но еще не могут штурмовать высоты современной математики?

Для них ученые-математики, преподаватели и студенты вузов, учителя каждый год придумывают новые задачи и предлагают их на математических олимпиадах.

В СССР первые городские олимпиады по математике состоялись полвека назад – в 1934 г. в Ленинграде и Тбилиси. Одним из инициаторов их проведения был замечательный геометр, член-корреспондент АН СССР Б. Н. Делоне. В 1935 г. состоялась математическая олимпиада в Москве. Председателем оргкомитета 1-й московской математической олимпиады был член-корреспондент АН СССР, впоследствии академик, П. С. Александров, а членами оргкомитета – профессора-математики МГУ.

На первых олимпиадах были заложены традиции их проведения. Математические олимпиады стали совместными праздниками математиков разных поколений – школьников, студентов (недавних участников олимпиад), руководителей кружков – учителей и молодых ученых, преподавателей и профессоров вузов. Задолго до олимпиады члены жюри начинают собирать и обдумывать задачи. На олимпиаде участникам, как правило, предлагают за три-пять часов решить три-пять различных по содержанию и трудности задач, требующих не столько знания школьной программы, сколько умения найти удачный ход мысли, способности логически четко рассуждать в непривычной ситуации. Разбор задач, который устраивают после проверки работ, обычно имеет форму лекции, где разбираются лучшие решения и характерные ошибки. Каждый участник может обсудить свою работу с членами жюри, выяснить, какие неточности он допустил. Завершает олимпиаду вручение премий и грамот.

Основная цель олимпиады, впрочем, не в том, чтобы выявить победителей, а в том, чтобы заинтересовать всех участников оригинальными задачами, привлечь новичков к систематическим занятиям в математических кружках, слушанию лекций, самостоятельной работе с книгой.

За прошедшие годы география математических олимпиад сильно расширилась, неизмеримо выросло число их участников. Олимпиады стали проводиться и в других странах, а в 1959 г. в Румынии состоялась первая международная олимпиада школьников.

С 1961 г. Министерство просвещения РСФСР, затем СССР ежегодно проводят математическую олимпиаду для школьников. С 1967 г. она стала называться Всесоюзной и состоит из пяти этапов: первый – школьные соревнования, второй – олимпиады городов и районов, третий – областные олимпиады, четвертый – республиканские олимпиады, а также олимпиады в Москве и Ленинграде и, наконец, пятый – заключительный тур. Если в школьных и городских олимпиадах могут участвовать все желающие (как правило, начиная с 5-го класса), то на дальнейшие этапы формируются команды из числа победителей предыдущих этапов.

В республиканских олимпиадах участвуют также несколько победителей заочного конкурса, который проводит журнал «Квант», а также команды некоторых специализированных физико-математических школ-интернатов. Около 150 учеников 8, 9, 10-го классов принимают участие в заключительном туре.

Из числа победителей Всесоюзной олимпиады формируется команда СССР на международную олимпиаду. В ней регулярно участвуют команды более 30 стран. В неофициальном командном первенстве по сумме баллов, числу I, I и III премий, полученных

участниками соревнований, - команда СССР почти всегда занимает одно из первых мест.

Разумеется, подняться на высшие ступеньки математического «олимпийского пьедестала» удается лишь немногим. Этот успех свидетельство не только незаурядных способностей, но и упорства, и умения быстро включаться, настраиваться на новую задачу. Не все бывшие чемпионы олимпиад стали крупными математиками, но можно назвать целый ряд известных и в нашей стране, и за рубежом ученых, чьи первые шаги были отмечены премиями олимпиад. Среди них, например, три советских математика разных поколений, каждый из которых прославился решением одной из «проблем Гильберта», поставленных на рубеже XIX-XX вв., - В. И. Арнольд, Ю. И. Матиясевич, В. М. Харламов.

Однако далеко не все математики в прошлом участники и победители олимпиад. Никак нельзя думать, что неудача на олимпиаде свидетельствует об отсутствии математических способностей. После неудачи нужно, конечно, попробовать получше подготовиться к следующей олимпиаде. Тут есть большой выбор: помимо разных туров Всесоюзной олимпиады в нашей стране проходит и много других математических соревнований школьников: олимпиады, организуемые отдельными вузами, олимпиады в летних физико-математических школах, командные соревнования классов и школ (они регуля