AB·cos α, а на оси Oy - отрезок длины AB·sin α, где α - величина угла между прямой AB и осью Ox (рис. 1,б).
Рис. 1
Аналогично определяется прямоугольная (ортогональная) проекция в пространстве: проекция точки M на плоскость p - основание M' перпендикуляра . Площадь плоской фигуры при проектировании умножается на cos α, где α - величина угла между плоскостью фигуры и плоскостью ее проекции. Проекцией параллелепипеда на плоскость будет в общем случае шестиугольник (составленный из трех параллелограммов - проекций трех граней); в частном случае он может выродиться в параллелограмм. В одной из задач Московской математической олимпиады школьников спрашивалось: при каком положении прямоугольного параллелепипеда площадь его проекции на горизонтальную плоскость будет наибольшей? Для ее решения (рис. 2) достаточно сравнить площадь проекции S' с площадью треугольника A'B'C', являющегося проекцией сечения параллелепипеда плоскостью, проходящей через три несмежные вершины A,B,C:S' = 2SA'B'C' и SA'B'C'≤ SABC, причем равенство достигается тогда, когда плоскость ABC горизонтальна: в этом положении площадь S' и будет наибольшей.
Рис. 2
Наряду с проекцией на плоскость можно говорить также о проекции на прямую l в пространстве. Ортогональная проекция точки M на прямую l - это точка M' пересечения l с плоскостью, проходящей через M и перпендикулярной l; например, проекция точки (x,y,z) пространства Oxyz на ось Oz - это точка на оси Oz с координатой z, а ее проекция на плоскость Oxy - точка с координатами (x,y). Аналогичная связь имеется между координатами вектора и координатами его проекций.
Прямоугольную проекцию тела на горизонтальную плоскость можно сравнить с его тенью от солнца, находящегося в зените. Если же солнце склоняется к горизонту, тень удлиняется. Эта тень и будет наклонной или параллельной проекцией на горизонтальную плоскость p по направлению α (α - прямая, задающая направление солнечных лучей); проекцией точки M при параллельной проекции по направлению α называется точка пересечения плоскости p с прямой, проходящей через M и параллельной α.
В технических чертежах часто приводят три проекции детали на взаимно ортогональные плоскости Ozy,Oyx,Oxz (рис. 3): вид спереди (анфас), вид сверху (план) и вид сбоку (профиль). Но для большей наглядности рядом помещают еще аксонометрическое изображение детали - ее параллельную проекцию на некоторую «наклонную» плоскость вместе с проекциями на эту плоскость трех осей Ox,Oy,Oz. Конечно, одна аксонометрическая проекция еще не задает формы тела и его расположения по отношению к осям координат, поэтому часто вместе с ней чертят также вторичную проекцию: аксонометрическое изображение одной из проекций тела и основных проецирующих лучей (на рис. 4 показана аксонометрия тела и его проекция на плоскость Oxy).
Рис. 3
Рис. 4
При параллельной проекции, (разумеется, как и при ортогональной) искажаются углы между прямыми, но выполняются такие условия: (1) параллельные прямые переходят в параллельные прямые; (2) сохраняются отношения длин параллельных отрезков (и отрезков одной прямой); (3) площади фигур, расположенных в одной плоскости, уменьшаются в одном и том же отношении. Пользуясь свойствами (1), (2) и зная проекции четырех точек A,B,C,O в пространстве, не лежащих в одной плоскости (или, что то же самое, зная проекции трех непараллельных одной плоскости векторов ), можно построить проекцию любой другой точки. При этом проекции A',B',C',O' могут занимать произвольные положения: для любого тетраэдра и любых четырех точек плоскости A',B',C',O' можно расположить в пространстве тетраэдр ABCO, подобный данному, вершины которого проецируются как раз в точки A',B',C',O'.
Этот факт называется теоремой Польке-Шварца, по именам немецких математиков К. Польке и Г. Шварца, доказавших ее в середине XIX в.
Параллельная проекция плоскости на другую плоскость определяется образами O',A',B' трех точек O,A,B (двух векторов и ); точка M, для которой , переходит в точку M', для которой . Свойства (1), (2), (3) показывают, что такая проекция - аффинное отображение одной плоскости на другую (и любое аффинное преобразование можно получить как композицию параллельных проекций (см. Геометрические преобразования).
Но свойства (1)-(3) уже не будут выполняться для центральной проекции. Центральной проекцией точки M с центром S на плоскость p называется точка M' пересечения прямой MS с плоскостью p. С этим видом проекции мы также сталкиваемся на каждом шагу. Тень от лампы, которую отбрасывает предмет на стену (рис. 5), - пример, когда фигура расположена между центром S и плоскостью проекции. Изображение в фотоаппарате (с некоторым приближением) - центральная проекция, центр которой расположен между предметом и плоскостью проекций p (изображение здесь получается перевернутым, рис. 6). Центральная проекция (ее также называют «линейная перспектива») играет большую роль и в изобразительном искусстве: скажем, рисуя на картине тень человека, отбрасываемую на асфальт от уличного фонаря, мы имеем дело с композицией двух центральных проекций: одна проекция человека с центром в лампочке фонаря на плоскость тротуара, вторая - проекция тени с центром в глазу художника на плоскость холста. Тут может спасти от ошибки лишь одно главное свойство центральной проекции: любую прямую она переводит в прямую. Изображением окружности при центральной проекции может быть не только эллипс (как при ортогональной или параллельной проекции), но также парабола или гипербола (рис. 7). Свойства фигур, сохраняющиеся при центральном проектировании, - предмет изучения проективной геометрии.
Рис. 5
Рис. 6
Рис. 7
ПРОПОРЦИЯ
Пропорцией называют равенство отношений двух или нескольких пар чисел или величин. Например, размеры модели машины или сооружения отличаются от размеров оригинала одним и тем же множителем, задающим масштаб модели. Поэтому если выбрать на оригинале четыре точки A,B,C и D и обозначить через A',B',C',D' соответствующие точки на модели, то будет выполняться равенство A'B'/AB = C'D'/CD (оба отношения равны масштабу). Такое равенство двух отношений и будет пропорцией. Справедлива и другая пропорция AB/CD = A'B'/C'D', которая показывает, что отношения расстояний точек оригинала такие же, как и отношения расстояний соответствующих точек модели.
В древности в неявной форме идеей пропорциональности пользовались при решении задач методом ложного положения: давали искомой величине произвольное значение, вычисляли, какое значение должна при этом иметь одна из данных величин, и сравнивали с условием задачи. Отношение величин давало коэффициент, на который надо умножить выбранное значение, чтобы получить правильный ответ.
Систематически пропорции начали изучать в Древней Греции. Сначала рассматривали лишь пропорции, составленные из натуральных чисел, и поэтому считали, что числа a,b,c,d образуют пропорцию, если a является тем же кратным (той же долей или той же дробью) от b, что и c от d. В этот период не различали пропорции, составленные из величин, и пропорции, составленные из чисел. Открытие несоизмеримости диагонали квадрата и его стороны заставило рассматривать такие пропорции как разные объекты. В IV в. до н.э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы.
Древнегреческие математики превратили пропорции в весьма гибкий аппарат исследования. С их помощью решали задачи, которые в наши дни решают с помощью уравнений, а место алгебраических преобразований занял переход от одной пропорции к другой. Например, было известно, что если справедлива пропорция a/b = c/d, то справедливы и следующие производные пропорции:
и многие иные.
Роль теории пропорций заметно уменьшилась после того, как было осознано, что отношение величин является числом (быть может, иррациональным), а потому пропорция - это просто равенство чисел. Это позволило применять вместо пропорции уравнения, а вместо преобразования пропорций - алгебраические преобразования.
ПРОСТОЕ ЧИСЛО
Натуральные числа, отличные от единицы, подразделяют на простые и составные. Простым называется такое натуральное число, делителями которого являются только оно само и единица. Остальные числа называются составными. Евклид определял простые числа так: «Простое число есть измеряемое только единицей, составное число есть измеряемое некоторым числом». Примеры простых чисел: 2, 5, 37, 1987. Числа же 4, 6, 162, 2553 составные. Число 1 не относят ни к простым, ни к составным. Простых чисел, так же как и составных, бесконечно много.
Каждое составное натуральное число можно разложить на простые множители. Например: 4 = 2·2, 6 = 2·3, 162 = 2·3·3·3·3, 2553 = 3·23·37. Можно сказать, что простые числа представляют собой как бы элементарные кирпичики, из которых строятся остальные числа.
«Основная теорема арифметики» утверждает, что любые два разложения данного натурального числа на простые множители одинаковы, если не обращать внимание на порядок следования сомножителей.
Для того чтобы доказать, что данное натуральное число N простое, достаточно установить, что оно не делится ни на одно из чисел от 2 до √N. Если же N делится на одно из таких чисел, то N составное.
Более удобный способ «отсеивания» составных чисел основан на следующем наблюдении. Если выписать подряд последовательные натуральные числа, то, зачеркивая каждое второе число из следующих за числом 2, мы отсеем все числа, кратные числу 2; зачеркивая каждое третье число из следующих за числом 3, мы отсеем все числа, кратные 3, и, вообще, какое бы натуральное число k мы ни взяли, зачеркивая каждое k-е число из стоящих за k, мы отсеем все числа, кратные k. Поэтому если нам нужно отыскать все простые числа, не превосходящие данного числа N, то выпишем подряд все числ