а от 2 до N. Отметим число 2 как первое простое. Затем по способу «отсеивания» отбросим все числа, кратные 2; первое невычеркнутое число - это следующее простое число 3. Отбросим все числа, кратные 3; первое невычеркнутое число - это следующее простое число 5 и т.д. Будем продолжать этот процесс до тех пор, пока не доберемся до простого числа, которое больше √N. Все оставшиеся невычеркнутыми числа будут простыми.
Такой способ отыскания простых чисел был известен еще греческому математику Эратосфену, жившему в III в. до н.э. Во времена Эратосфена писали на восковых дощечках, а вместо того чтобы числа вычеркивать, дощечку в нужном месте прокалывали. Отсюда и название способа - «решето Эратосфена».
В разные времена математики искали формулу, которая при различных значениях входящих в нее переменных давала бы простые числа. Так, Л. Эйлер указал многочлен n2 - n + 41, значения которого при n = 0,1,2,...,40 - простые числа. Однако легко доказать, что нет многочлена от одной переменной, который при всех целых ее значениях принимает простые значения. П. Ферма высказал предположение, что все числа вида простые (при k = 0,1,2,3,4 это числа 3, 5, 17, 257, 65537). Однако Л. Эйлер опроверг это предположение, доказав, что при k = 5 число составное. Все же известны формулы, принимающие при всех целых значениях переменных простые значения. Так, советский математик Ю. В. Матиясевич доказал, что существует многочлен от нескольких переменных, который принимает все простые значения по одному разу, причем все положительные его значения - простые числа.
Издавна математиков интересовал вопрос о распределении простых чисел в натуральном ряду.
Рассуждение Евклида, доказывающее бесконечность числа простых чисел в натуральном ряду (см. Евклида алгоритм), применимо и для доказательства бесконечности числа простых чисел некоторого специального вида, например простых чисел вида 4n - 1. Чуть видоизменяя это рассуждение, можно получить доказательство бесконечности количества простых чисел вида 4n + 1, 6n + 1 и некоторых других.
В 1837 г. немецкому математику Л. Дирихле удалось доказать, что в любой арифметической прогрессии, первый член и разность которой взаимно просты, есть бесконечно много простых чисел. В доказательстве Дирихле были использованы новые для теории чисел методы (функции комплексного переменного, ряды), открывшие совершенно новые пути для ее развития. О простых числах более сложного вида известно мало. Так, до сих пор неизвестно, конечно или бесконечно число простых чисел вида n2 + 1 или же простых чисел вида 2n - 1 (эти последние называются простыми числами Мерсенна). Наибольшее из известных простых чисел является простым числом Мерсенна и равно 2132049-1.
Вопрос о том, как часто простые числа встречаются в натуральном ряду и как они распределены среди натуральных чисел, оказался очень сложным. Изучение таблиц простых чисел показывает, что в натуральном ряду есть участки, где простые числа располагаются гуще. Есть даже числа, которые находятся совсем близко друг от друга, как, например, 2 и 3, 3 и 5, 191 и 193, 2711 и 2713. Такие пары чисел называются близнецами. До сих пор неизвестно, конечно или бесконечно число пар близнецов. Но есть и сколь угодно длинные отрезки натурального ряда, в которых нет ни одного простого числа. Например, среди последовательных чисел k! + 2, k! + 3, …, k! + k нет ни одного простого.
Важными характеристиками расположения простых чисел в натуральном ряду служат величины: π(n) - число простых чисел, не превосходящих n, и отношение π(n)/n - средняя плотность простых чисел среди первых n натуральных. Изучение таблиц простых чисел показало, что, двигаясь по натуральному ряду, мы будем встречать простые числа в среднем все реже. Эйлер обосновал это наблюдение, доказав, что
.
Отсюда, в частности, следует, что простые числа в среднем располагаются реже, чем члены какой угодно арифметической прогрессии. Можно доказать, что простые числа располагаются все же гуще квадратов натуральных чисел.
Но все эти результаты очень мало говорят о самом числе π(n). Математикам хотелось получить для π(n) какую-нибудь достаточно простую приближенную формулу. Первая гипотеза о величине π(n) была сделана независимо французским математиком А. Лежандром и К. Гауссом около 1800 г. Она заключалась в том, что π(n) ≈ n/ln n. Однако доказать это утверждение удалось лишь 100 лет спустя.
Большой вклад в разработку этого доказательства внес П. Л. Чебышев, а окончательный результат был получен в 1896 г. французским математиком Ж. Адамаром и бельгийским математиком Ш. Валле-Пуссеном. Кроме того, в 1852 г. Чебышев доказал предположение французского математика Ж. Бертрана о том, что для любого натурального числа n между числами n и 2n всегда есть простое число.
ПРОЦЕНТ
Процентом называется сотая доля числа. Для чего нужны проценты и почему для этого введен специальный термин?
Прежде чем ответить на эти вопросы, попробуем ответить на другой: много ли соли в морской воде? Конечно, можно налить в ведро морскую воду, поставить его на огонь и, подождав, пока вся вода испарится, собрать и взвесить оставшуюся соль. Можно ли утверждать, что у другого человека получится столько же? Видимо, нет. Его ведро может оказаться больше или меньше, оно может быть налито более или менее полно; в результате получится другое количество соли. Таким образом, наша мера солености морской воды (количество граммов соли на ведро воды) оказалась неудачной.
Возьмем другую меру - количество граммов соли на 1 кг раствора. Для этого нужно до кипячения взвесить раствор, а потом массу полученной соли разделить на массу раствора. Пусть масса раствора 8,4 кг, а масса соли 21 г. Тогда получаем ответ: 2,5 г соли на 1 кг раствора. Если опыт повторить, то получится почти такая же величина.
Но почему число граммов в килограмме, а не центнеров в тонне или английских фунтов в пуде? Давайте считать число граммов в грамме, тогда, тот же ответ получится, если считать число тонн в тонне или число пудов в пуде. При этом удобно записывать результат в виде десятичной дроби, поскольку десятичные дроби удобнее сравнивать между собой по величине.
Но с какой точностью находить отношение? С помощью карандаша и бумаги мы можем делить до миллионных долей, однако точность первоначальных чисел зависит от точности приборов, с которых они были получены: весов, вольтметров, спидометров и т.д. Как правило, верными можно считать лишь первые две цифры показаний этих приборов. В результате будем получать 0,27, 0,64, 0,37 и другие сотые доли числа, т.е. проценты. Была придумана и специальная запись - 27%, 64%, 37%.
Проценты были известны индийцам еще в V в. Это закономерно, так как в Индии с давних пор счет велся в десятичной системе счисления. В Европе десятичные дроби появились на тысячу лет позже, их ввел бельгийский ученый С. Стевин. В 1584 г. он впервые опубликовал таблицу процентов.
Введение процентов оказалось удобным не только для оценки содержания одного вещества в другом. В процентах стали измерять изменение производства товара, рост денежного дохода и т.д.
Со временем люди научились извлекать из вещества его компоненты, составляющие тысячные доли от массы самого вещества. Тогда, чтобы не вводить нуль и запятую, ввели новую величину – промилле - тысячную долю, которую обозначили знаком ‰ и вместо 0,6% стали писать 6‰. Однако эту величину постоянно применяют лишь в некоторых областях техники, а в большинстве случаев используют десятые и сотые доли процента. Так, содержание соли в морской воде составляет 0,25%, или 2,5‰.
РАВНОВЕЛИКИЕ И РАВНОСОСТАВЛЕННЫЕ ФИГУРЫ
При вычислении площадей многоугольников используется простой прием, называемый методом разбиения. Рассмотрим многоугольники F и H, изображенные на рис. 1, где показано, как разбить эти многоугольники на одинаковое число соответственно равных частей (равные части отмечены одинаковыми цифрами). О многоугольниках F и H говорят, что они равносоставлены. Вообще, многоугольники A и B называются равносоставленными, если, определенным образом разрезав многоугольник A на конечное число частей, можно, располагая эти части иначе, составить из них многоугольник B. Легко видеть, что справедлива следующая теорема: равносоставленные многоугольники имеют одинаковую площадь, или, как говорят, равновелики. Например, параллелограмм равносоставлен с прямоугольником (рис. 2), и потому, зная формулу площади прямоугольника, находим, что площадь параллелограмма равна произведению длин его стороны и соответствующей высоты.
Рис. 1
Рис. 2
Этот пример иллюстрирует метод разбиения, состоящий в том, что для вычисления площади многоугольника пытаются разбить его на конечное число частей таким образом, чтобы из этих частей можно было составить более простой многоугольник, площадь которого нам уже известна. Например, треугольник равносоставлен с параллелограммом, имеющим то же основание и вдвое меньшую высоту (рис. 3); из этого легко выводится формула площади треугольника. Этот способ вычисления площадей многоугольников был известен еще Евклиду, который жил более 2000 лет назад.
Рис. 3
Замечательно, что для приведенной выше теоремы справедлива и обратная теорема: если два многоугольника равновелики, то они равносоставлены. Эту теорему, доказанную в первой половине XIX в. венгерским математиком Ф. Бойяи и немецким офицером и любителем математики П. Гервином, можно пояснить так: если имеется пряник в форме многоугольника и многоугольная коробка совершенно другой формы, но той же площади, то можно так разрезать пряник на конечное число кусков, что их удастся вложить в эту коробку.
В связи с теоремой Бойяи-Гервина возникает вопрос о наложении дополнительных ограничений на число или расположение частей, из которых составляются равновеликие многоугольники. Например, представим себе плоскость в виде листа цветной бумаги, у которого одна сторона красная, а другая - белая. Если из такой бумаги вырезаны два равновеликих красных многоугольника, то возникает вопрос, можно ли один из них разрезать на части, из которых удастся сложить красный многоугольник, равный второму. Части разрешается перекладывать, не переворачивая их на белую, изн