примерно 2100 км. В железнодорожном справочнике указано другое число: 3895 км. В этом, конечно, нет ничего удивительного: поезда не могут ездить напрямик, как летают самолеты, потому железнодорожники и летчики оценивают расстояние по-разному.
Для построения теории расстояния, применимой во многих разделах математики, оказывается достаточно выделить очень небольшое число основных свойств расстояния.
Пусть каждым двум элементам a, b множества X по некоторому правилу сопоставлено число ρ(a,b) ≥ 0, при этом выполнены три условия:
1) ρ(a,b) = 0 тогда и только тогда, когда a=b;
2) ρ(a,b) = ρ(b,a) для любых двух a и b;
3) ρ(a,c) ≤ρ(a,b) + ρ(b,c) для любых трех элементов a,b,c, из X.
Множество X, снабженное такой функцией ρ, называется метрическим пространством. Свойство (3) для обычного расстояния на плоскости выражает тот факт, что длина каждой стороны треугольника меньше суммы длин двух других сторон; это свойство называется неравенством треугольника. В конкретных примерах именно оно не очевидно и нуждается в проверке. Неравенство треугольника на сфере сводится к такой теореме: любой плоский угол COA трехгранного угла ABCO меньше суммы двух других плоских углов AOB и BOC (рис. 1).
Рис. 1
Отправляясь в путешествие, мы часто вынуждены иметь дело с таким «расстоянием»: D(A,B) - это наименьшая стоимость проезда из пункта A в пункт B. Неравенство треугольника здесь очевидно: чтобы добраться из A в C, мы можем сначала доехать от A до B, а потом - от B до C (заплатив за это D(A,B) + D(B,C) рублей); поэтому стоимость D(A,C) самого дешевого маршрута из A в C не больше суммы D(A,B) + D(B,C). Можно ввести и другое «расстояние» между A и B. В любом конечном графе расстоянием между двумя вершинами можно считать наименьшее число ребер в пути, соединяющих эти вершины.
Расстояние между двумя точками a и b числовой прямой R равно |a - b|. В прямоугольной декартовой системе координат на плоскости расстояние между двумя точками A(x1,y1) и B(x2,y2) выражается с помощью теоремы Пифагора по формуле:
.
Аналогичная формула в пространстве для расстояния между точками A(x1,y1,z1) и B(x2,y2,z2):
.
На одном и том же множестве X можно многими разными способами ввести расстояние. Например, на плоскости за расстояние между точками A(x1,y1) и B(x2,y2) можно принять ρ(A,B) = |x1 - x2| +|y1 - y2| или ρ(A,B) = max{|x1 - x2| ,|y1 - y2| } - наибольшее из двух чисел |x1 - x2|, |y1 - y2|.
Расстояние можно определять не только между точками. Так, расстоянием от точки A до прямой l (или до плоскости в пространстве) называется длина перпендикуляра, опущенного из точки A на прямую l (на плоскость p). Вообще, расстоянием от точки A до фигуры Ф называется наименьшее из расстояний от этой точки до точек фигуры Ф. Иногда используют аналогичное определение расстояния между двумя непересекающимися фигурами; в частности, расстоянием между двумя параллельными или скрещивающимися прямыми (рис. 2) считается длина перпендикулярного обеим прямым отрезка с концами на этих прямых - наименьшее из расстояний между точками двух прямых.
Рис. 2
РЯД
Рядом в математике называется выражение вида
a1 + a2 + a3 +..., (1)
составленное из чисел a1,a2, a3,..., которые называются членами ряда. Многоточие в конце (иногда шутят, что в нем-то и заключена суть ряда) указывает, что выражение (1) не имеет последнего слагаемого, за каждым слагаемым всегда стоит следующее. Таким образом, ряд есть «бесконечная» сумма.
При сложении конечного числа слагаемых всегда получается определенный числовой результат, вычислить же сумму бесконечного числа слагаемых, вообще говоря, не сможет ни человек, ни ЭВМ, поскольку процесс сложения членов ряда (по самому определению) никогда не кончается. Поэтому выражение (1) - это лишь некий математический символ, которому надлежит придать определенный смысл.
Рассмотрим конкретный ряд
1/2 + 1/4 + 1/8 + 1/16 + ..., (2)
каждый последующий член которого равен половине предыдущего.
Подсчитаем суммы одного, двух, трех, четырех, пяти его членов:
Нетрудно заметить, что значения этих сумм отличаются от 1 на 1/2, 1/4, 1/8, 1/16, 1/32, т.е. при увеличении числа слагаемых мы получаем для их сумм хотя и различные числовые значения, однако все меньше и меньше отличающиеся от единицы. Число 1 разумно назвать суммой ряда (2).
Подкрепим наши доводы еще следующим рассуждением. Прямоугольник площадью в 1 квадратную единицу разобьем на два прямоугольника одинаковой площади (рис. 1). Один из получившихся прямоугольников вновь разобьем на два прямоугольника одинаковой площади. Продолжая мысленно этот процесс деления, получим прямоугольники, площади которых равны 1/2, 1/4, 1/8, ..., 1/2n, ..., квадратных единиц. Объединение всех этих прямоугольников дает исходный прямоугольник, значит, и сумма их площадей должна быть равна площади исходного:
1/2 + 1/4 + 1/8 + 1/16 + ... = 1.
Рис. 1
Приближенные суммы ряда (1)
S1 = a1,
S2 = a1 + a2,
Sn = a1 + a2 + ... + an
называются частичными суммами. Если значения частичных сумм Sn при неограниченном возрастании n стремятся к некоторому числу A, то ряд называется сходящимся; число A называют при этом суммой ряда и пишут:
a1 + a2 + a3 + ... = A.
Таким образом, эта запись есть сокращенная форма следующего утверждения: при неограниченном возрастании n значения Sn сколь угодно мало отличаются от A, т.е. число A есть предел последовательности Sn, что записывается так:
.
Не для всякого ряда последовательность его частичных сумм стремится к определенному пределу. Например, для ряда
1 - 1 + 1 - 1 + ... (3)
частичные суммы Sn принимают попеременно значения 1 и 0:
S1 = 1, S2 = 1-1=0, S3 = 1, S4 = 0, …
и с ростом n, очевидно, не приближаются неограниченно к какому-либо числу.
Ряд, у которого последовательность частичных сумм Sn не имеет предела, называется расходящимся. Таков ряд (3). Расходящийся ряд не имеет суммы.
Примеры сходящихся рядов:
3/10 + 3/100 + 3/1000 + 3/10000 + ...; (4)
1 - 1/3 + 1/5 - 1/7 + 1/9 - ...; (5)
1/12 + 1/22 + 1/32 + 1/42 + .... (6)
Ряд (4) сходится к числу 1/3 и дает представление этого числа бесконечной десятичной дробью: 1/3=0,333.... Суммы рядов (5) и (6) равны соответственно π/4 и π2/6 и дают возможность приближенно вычислить число π с любой степенью точности (если взять достаточно много членов ряда).
Для любого числа x, удовлетворяющего условию -1 < x < 1, сходящимся будет геометрический ряд
1 + x + x2 + x3 + x4 + ...
(его члены образуют геометрическую прогрессию со знаменателем x). Сумма его первых n членов, т.е. частичная сумма Sn, равна
Sn = (1 - xn)/(1 - x)
и в случае -1 < x < 1 при n →∞ стремится к 1/(1 - x). Поэтому при -1 < x < 1 можно написать:
1 + x + x2 + x3 + ... = 1/(1-x). (7)
Геометрический ряд исторически был первым бесконечным рядом, для которого была определена его сумма. Архимед (III в. до н.э.) для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) применил суммирование бесконечной геометрической прогрессии со знаменателем 1/4.
Интересно, что после Архимеда вплоть до XVI в. математика рядами не занималась, ряды вошли в математику лишь тогда, когда началось изучение изменяющихся процессов. Математики занялись вычислением сумм рядов (например, для ряда (5) сумму нашел Г. Лейбниц, а для ряда (6) - Л. Эйлер), хотя понятие сходимости ряда точно установлено еще не было. Считалось, что любой ряд имеет сумму и с рядами можно производить те же арифметические действия, что и с многочленами: складывать, умножать, переставлять слагаемые и т. п. Иногда это приводило к фантастическим результатам, например, получали, что сумма ряда 1 - 1 + 1 - 1 + ... может быть равна и 0, и 1, и даже 1/2. Рассуждения были примерно такие:
1 - 1 + 1 - 1 + ... = (1-1) + (1-1) + ... = 0 или 1 - 1 + 1 - 1 + 1 - ... = 1 -(1-1) - (1-1) - ... = 1, а результат 1/2 получался следующим образом: если S = 1 - 1 + 1 - 1 + 1 - ..., то из равенства 1-1+1-1+... = 1-(1-1+1-1+...) следует S = 1 - S, откуда S=1/2. Позже сходящимися рядами стали считать лишь те ряды, у которых n-й член an при неограниченном возрастании n стремится к нулю. Если ряд сходится, то предел an действительно равен нулю, так как an = Sn - Sn-1 и с возрастанием n эта разность стремится к нулю. Однако нашлись ряды, у которых an стремится к нулю, а последовательность частичных сумм не имеет конечного предела. Таков, например, гармонический ряд
1 + 1/2 + 1/3 + 1/4 + ....
Четкое определение сходимости ряда, основанное на понятии предела последовательности частичных сумм, появилось лишь в начале XIX в. Тогда же началось систематическое изучение рядов.