Энциклопедический словарь юного математика — страница 78 из 95

Некоторые числовые ряды обладают тем свойством, что их сумма не меняется при перестановке членов, например, абсолютно сходящиеся ряды. Ряд (1) называется абсолютно сходящимся, если сходится ряд

|a1| + |a2| + |a3| + ...

из абсолютных величин его членов. Таковы ряды (2), (4) и (6), а ряд (5) не является абсолютно сходящимся. Абсолютно сходящиеся ряды можно складывать, вычитать, умножать и делить по тем же правилам, что и конечные суммы.

Особое значение имеет степенной ряд, т.е. ряд вида

a0 + a1x + a2x2 + a3x3 + ....      (8)

Для одних значений x получающийся из (8) числовой ряд может сходиться, для других - расходиться (например, геометрический ряд (7) сходится при любом x, удовлетворяющем условию -1 < x < 1, а при x = -1 дает расходящийся ряд 1 - 1 + 1 - 1 + ...).

Множество всех значений x, для которых ряд (8) сходится, называется множеством сходимости этого ряда. На множестве сходимости сумма ряда (8) зависит от x и является функцией аргумента x. Если

a0 + a1x + a2x2 + a3x3 + ... = f(x),      (9)

то левая часть равенства представляет собой разложение функции f(x) в бесконечный степенной ряд. Например, формула (7) дает разложение функции 1/(1 - x) при -1 < x < 1 в бесконечный степенной ряд.

Идея представления функций степенными рядами принадлежит И. Ньютону, он нашел разложения многих функций, например:

   (10)

где x - радианная мера угла, этот ряд сходится (и к тому же абсолютно) для любого x. Если в разложении (9) функции f(x) в степенной ряд ограничиться несколькими первыми членами, то мы получим приближенное представление функции: оно тем точнее, чем больше взято членов ряда (слагаемых). Например, приближенная формула

sin x ≈ x - x3/6,

правая часть которой - первые два члена формулы (10), дает значения sin x с ошибкой, меньшей 0,0005, при всех 0 < x < 0,59, что в градусной мере соответствует углам 0° < x < 32°38'. С той же точностью до 0,0005 можно считать sin x ≈ x при всех положительных x, меньших 6°33'.

Существуют различные способы представления функций бесконечными рядами, например, при рассмотрении периодических процессов используются тригонометрические ряды, т.е. ряды вида

a0 + a1 sin x + b1 cos x + a2 sin 2x + b2 cos 2x + ....

Заметим, что все рассмотренные ряды имели ясный и вполне определенный закон образования их членов. Обычно же ряд задается формулой n-го члена ряда (an), его называют общим членом ряда. Из этой формулы подстановкой вместо n определенного числа - номера члена ряда - находят слагаемое, имеющее этот номер. Например, общий член ряда (2) имеет вид an = 1/2n, и легко находятся a1 = 1/2, a2 = 1/2n = 1/4, a3 = 1/23 = 1/8. Для ряда (3) общий член выражается так: an = (-1)n-1.

Для краткой записи суммы употребляется символ  (греческая буква «сигма», начальная буква слова «сумма»). Символ  (читается «сумма по n от 1 до N») означает сумму всех слагаемых, получаемых, когда n последовательно пробегает значения от 1 до N, например:

,

.

Для обозначения всего ряда верхний индекс заменяется на символ бесконечности ∞:

.

Таким образом, можно записать:

,

.


СИНУСОВ ТЕОРЕМА


Эта теорема устанавливает зависимость между сторонами треугольника и противолежащими им углами. Она утверждает, что длины a, b, c сторон любого треугольника ABC (см. рис. 1) пропорциональны синусам противолежащих углов, т.е.

a/sin A = b/sin B = c/sin C = 2R,

где R - радиус описанной окружности.

Рис. 1

Подчеркнем, что стороны треугольника пропорциональны лишь синусам его внутренних углов, но не пропорциональны самим углам. Так, в прямоугольном треугольнике с острыми углами 30° и 60° sin 90° больше sin 30° в 2 раза: 1:1/2 = 2, гипотенуза больше катета, лежащего против угла 30°, также в 2 раза. Но угол 90° больше угла 30° в 3 раза.

По теореме синусов удобно вычислять длины сторон треугольника, если известны величины его углов и длина одной из сторон.

Теорема синусов была впервые доказана в X-XI вв. математиками Ближнего и Среднего Востока. Открытие этой теоремы сыграло важнейшую роль в развитии тригонометрии.


СИНУСОИДА


Синусоида - волнообразная плоская кривая, которая является графиком тригонометрической функции y = sin x в прямоугольной системе координат. Если рулончик бумаги разрезать наискось и развернуть его, то край бумаги окажется разрезанным по синусоиде (рис. 1,а). Любопытно, что проекция на плоскость винтовой линии также будет синусоидой (рис. 1,б).

Рис. 1

Длина «волны» синусоиды равна 2π. Это объясняется тем, что значение функции y = sin x при любом x совпадает с ее значением при x + 2π (т.е. период функции равен 2π).

Синусоида пересекает ось Ox в точках πk, которые являются точками перегиба; в точках π/2 + 2πk синусоида имеет максимум, а в точках -π/2 + 2πk - минимум ( k = 0,±1,±2,...).

Часто синусоидой называют кривую, которая является графиком функции вида y = A sin (ωx + φ) + b. График этой функции получается из синусоиды y = sin x сдвигом по оси Ox на , растяжением (сжатием) в ω раз по оси Ox, растяжением (сжатием) в A раз по оси Oy и сдвигом по оси Oy на b. Число A называется амплитудой (или размахом), ω - круговой частотой, φ - начальной фазой колебания.

График функции y = cos x получается из синусоиды сдвигом влево на π/2 и тоже называется синусоидой (реже косинусоидой).

Изменение какой-либо величины по закону синуса называется гармоническим колебанием. Примеры таких колебаний: колебания маятника, колебания напряжения в электрической сети, изменение тока и напряжения в колебательном контуре и др.

Еще один пример синусоидальных колебаний - звук (гармонические колебания воздуха). Однако редко удается услышать чистый звук - звук, соответствующий колебанию y = Asin ωt. В большинстве случаев мы слышим ряд других звуков (обертоны), соответствующих колебаниям с меньшей амплитудой. Эти звуки музыкальных инструментов дают основному тону специфическую окраску - тембр.


«Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальце, а восемь, то человечество пользовалось бы восьмеричной системой». Н. Н. Лузин


СИСТЕМЫ СЧИСЛЕНИЯ


Системы счисления - это способы записи чисел в виде, удобном для прочтения и выполнения арифметических операций.


Рассматривая археологические находки эпохи палеолита (камни, кости животных), можно заметить, что люди стремились группировать точки, полосы и насечки по 3, 4, 5 или по 7. Такая группировка облегчала счет. В древности чаще всего считали на пальцах, и поэтому предметы стали группировать по 5 или по 10. В дальнейшем десяток десятков получил особое название (в русском языке - сотня), десяток сотен - свое название и т.д. Для удобства записи такие узловые числа стали обозначать особыми знаками. Если при пересчете оказывалось 2 сотни 7 десятков и еще 4 предмета, то дважды повторяли знак для сотни, семь раз - знак для десятка и четыре раза - знак для единицы. Знаки для единиц, десятков и сотен были не похожи друг на друга. При такой записи числа знаки можно было располагать в любом порядке, и значение записанного числа при этом не менялось. Поскольку в такой записи положение знака не играет роли, подобные системы счисления стали называть непозиционными. Непозиционными были системы счисления у древних египтян, греков и римлян. Непозиционные системы счисления были более или менее пригодны для выполнения операций сложения и вычитания, но совсем не удобны для умножения и деления. Чтобы облегчить работу, применялись счетные доски - абаки. Современные счеты являются видоизмененным абаком (см. Вычислительная техника).

У древних вавилонян система счисления вначале была непозиционной, но впоследствии они научились использовать информацию, заключенную в порядке записи знаков, и перешли к позиционной системе счисления. При этом в отличие от используемой нами системы счисления, в которой значение цифры меняется в 10 раз при перемещении на одно место (такую систему называют десятичной), у вавилонян при перемещении знака происходило изменение значения числа в 60 раз (такую систему счисления называют шестидесятеричной). Долгое время в вавилонской системе счета не было нуля, т.е. знака для пропущенного разряда. Это не создавало неудобств, так как порядок числа был обычно известен. Но когда стали составлять обширные математические и астрономические таблицы, возникла необходимость в таком знаке. Он встречается и в поздних клинописных записях, и в таблицах, составленных в Александрии в начале нашей эры. Следы вавилонской системы счисления сохранились до наших дней в порядке счета единиц времени (1 ч = 60 мин, 1 мин = 60 с).


Хотя вавилонские ученые пользовались шестидесятеричной системой счисления, на практике все чаще использовали сложный гибрид этой системы с десятичной. А индийские математики, много заимствовавшие у вавилонских ученых, применяли чисто десятичную систему счета. Сочетав с ней вавилонский метод обозначения чисел, индийцы создали в VI в. способ записи, использующий лишь 9 цифр. Вместо нуля оставляли пустое место, а позднее стали ставить точку или маленький кружок. В IX в. появился особый знак для нуля. Долгое время понятие нуля казалось непонятным и абстракт