Энциклопедический словарь юного математика — страница 80 из 95

a ≡ b(mod m) и называют сравнением. Вот примеры сравнений: 5 ≡ 1(mod 2), 48 ≡ 0(mod 6), -16 ≡ 9(mod 5). Сравнение по модулю 1 выполняется для любых двух целых чисел, так как всякое число кратно 1. Два числа сравнимы по модулю 2, если они одной четности, т.е. либо оба четны, либо оба нечетны.


Определение сравнения было сформулировано в книге К. Ф. Гаусса «Арифметические исследования». Эту работу, написанную на латинском языке, начали печатать в 1797 г., но книга вышла в свет лишь в 1801 г. из-за того, что процесс книгопечатания в то время был чрезвычайно трудоемким и длительным. Первый раздел книги Гаусса так и называется: «О сравнении чисел вообще».

Сравнениями очень удобно пользоваться в тех случаях, когда достаточно знать в каких-либо исследованиях числа с точностью до кратных некоторого числа. Например, если нас интересует, на какую цифру оканчивается куб целого числа a, то нам достаточно знать a лишь с точностью до кратных числа 10, и можно пользоваться сравнениями по модулю 10.

Поскольку сравнение по модулю m есть не что иное, как «равенство с точностью до кратных m», то многие свойства сравнений напоминают свойства равенств. Так, два сравнения по одинаковому модулю можно складывать, вычитать, перемножать так же, как и равенства: если a ≡ b(mod m), c ≡ d(mod m), то a + c ≡ b + d(mod m), a - c ≡ b - d(mod m), ac ≡ bd(mod m). В частности, обе части сравнения можно умножать на целое число. Однако не всегда можно сократить обе части сравнения на какой-нибудь множитель. Например: 4 ≡ 2(mod 2), но . Известно, что если произведение двух чисел равно нулю, то нулю равен хотя бы один из сомножителей. Аналогичное свойство для сравнений в общем случае не выполняется: 2·3 ≡ 0(mod 6), но  и . Однако если a·b ≡ 0(mod m) и числа a и m взаимно просты, то b ≡ 0(mod m). В частном случае, когда модуль сравнения - простое число, из того, что произведение двух чисел сравнимо с нулем, следует, что хотя бы один из сомножителей сравним с нулем, т.е. в этом случае имеется полная аналогия с равенствами.

Поскольку два числа сравнимы по модулю m в том, и только в том, случае, если они дают при делении на m одинаковые остатки, то одним из простейших примеров использования сравнений является вывод признаков делимости. Покажем, как это делается в случае признака делимости на 3. Произвольное число n можно записать в виде n = a + 10b + 100c + ..., где a - число единиц, b - число десятков и т.д. Так как 10 ≡ 1(mod 3), то 102≡ 1(mod 3), 103≡ 1(mod 3) и т.д. Поэтому n ≡ a + b + c + ...(mod 3). В частности, n делится на 3 в том, и только в том, случае, если сумма его цифр делится на 3.

Приведем пример одной исключительно важной конструкции, к которой приводит понятие сравнения. Произвольное целое число при делении на данное натуральное число m дает в качестве остатка одно из чисел 0,1,...,m-1. Объединим в один класс числа, дающие остаток 0 при делении на m, в другой класс - числа, которые при делении на m дают остаток 1, в следующий класс - числа, дающие остаток 2, и т.д. Все целые числа разобьются на m классов. Числа, попавшие в один класс, сравнимы по модулю m, а в разные классы - несравнимы. Получившиеся классы чисел называются классами вычетов по модулю m или просто классами по модулю m. Класс, содержащий число k, обозначают k̅. Так, по модулю 2 имеется два класса: 0̅ и 1̅; класс 0̅ состоит из всех четных чисел, а класс 1̅ - из всех нечетных чисел. У класса 0̅ есть и другие обозначения, например 2̅, 4̅, . Для классов по модулю m определены действия сложения, вычитания и умножения по формулам: , , . Приведем для примера таблицы сложения и умножения для классов по модулю 2.

Эти таблицы являются другой формой записи известных правил: сумма четных чисел четна, а сумма нечетного и четного чисел нечетна; произведение четного числа на любое целое число - четное число и т.д.

Классы вычетов по модулю m в случае простого модуля образуют поле.

Сравнения можно рассматривать не только для целых чисел, но и для некоторых других математических объектов. Например, для многочленов f(x), g(x), h(x) запись f(x) ≡ g(x)(mod h(x)) означает, что f(x) - g(x) делится на h(x).


СРЕДНИЕ ЗНАЧЕНИЯ


Классическими средними значениями, составленными из двух положительных чисел a и b, принято считать: среднее арифметическое - число (a+b)/2, среднее геометрическое (называемое также средним пропорциональным) - число  и среднее гармоническое - число 2ab/(a+b). Эти средние были известны еще античным математикам, они играли большую роль, в частности, в древнегреческой теории музыки. В одном из математических текстов, который приписывают древнегреческому математику Архиту (ок. 428-365 гг. до н.э.), среднее арифметическое m, среднее геометрическое g и среднее гармоническое h определялись как равные средние члены соответственно арифметической, геометрической и гармонической пропорций:

a-m=m-b; a:g=g:b; (a-h):a=(h-b):b.

Из этих равенств легко получаем:

, , .

По преданию гармоническое среднее ввел Пифагор (VI в. до н.э.), выразив с его помощью отношение основных гармонических интервалов. Пифагор установил, что вместе со струной длиной 12l, созвучно сливаясь с ней, звучат струны того же натяжения с длинами 6l (выше на октаву), 8l и 9l (выше на квинту и кварту), при этом 9 есть среднее арифметическое чисел 6 и 12, а 8 он определил как среднее гармоническое этих чисел. Это созвучие (и определяющее его отношение чисел 6, 8, 9, 12) называлось тетрадой. Пифагорейцы считали, что тетрада есть «та гамма, по которой поют сирены».

В древнегреческой математике, которая была по преимуществу геометрической, было известно несколько способов построения средних по двум данным отрезкам a и b. У Паппа Александрийского (III в.) в его «Математическом собрании», своде результатов древнегреческой математики, приведено построение среднего геометрического двух отрезков по способам его предшественников Эратосфена (276-194 гг. до н.э.), Никомеда (II в. до н.э.) и Герона (I в.), дано также описание построения на одной фигуре всех трех средних.

На рис. 1 показано одно из возможных построений. АС и СВ (|АС| = а, |СВ| = b) - смежные отрезки одной прямой, на отрезке АВ как на диаметре построена окружность, радиус этой окружности равен (а + b)/2. В точке С восставлен перпендикуляр к прямой АВ. В прямоугольном треугольнике ANВ (угол ANВ - прямой, он опирается на диаметр) высота NC есть среднее пропорциональное отрезков АС и СВ, т. е. |NC| = v(ab). Если NM - проекция NC на NO, то нетрудно подсчитать, что |NM| = 2ab/(а + b). Так как перпендикуляр короче наклонной, то |NM| < |NC| < |ON|. Если длины отрезков АС и СВ равны, то точки О и С совпадают и совпадают также все рассматриваемые отрезки NM, NC и ON. Таким образом, при любых положительных а и b справедливы неравенства:

,

и в каждом из них знак равенства достигается лишь в случае a=b.

Рис. 1

Неравенство  называется неравенством о среднем арифметическом и среднем геометрическом. Из него следуют две теоремы, которые часто используются при решении задач на наибольшее и наименьшее значения, так называемых задач на экстремум: 1) произведение двух положительных чисел, при постоянной сумме, имеет наибольшее значение, когда числа равны; 2) сумма двух положительных чисел, при постоянном произведении, имеет наименьшее значение, когда числа равны.

Применив эти теоремы, нетрудно, например, установить, что из всех прямоугольников с заданным периметром наибольшую площадь имеет квадрат и из всех прямоугольников с заданной площадью наименьший периметр имеет также квадрат.

Средним арифметическим n положительных чисел a1,a2,...,an называется число

.

Средним геометрическим n положительных чисел a1,a2,...,an называется корень n-й степени из произведения этих чисел:

.

Средним гармоническим n положительных чисел a1,a2,...,an называется число

.

Заметим, что число, обратное среднему гармоническому h, есть среднее арифметическое n чисел, обратных данным:

.

Средним квадратичным n произвольных чисел a1,a2,...,an называется корень квадратный из среднего арифметического квадратов этих чисел:

.

Для любых положительных чисел a1,a2,...,an эти средние удовлетворяют неравенствам:

h ≤ g ≤ m ≤ d,    (1)

в каждом из которых знак равенства достигается лишь в случае, когда a1=a2=...=an.

Самым важным и знаменитым из этих неравенств является неравенство о среднем арифметическом и среднем геометрическом:

.   (2)

Применяя его к числам 1/a1, 1/a2,..., 1/an, можно доказать неравенство h ≤ g, а применяя его к натуральным числам 1, 2,..., n и используя тот факт, что

1 + 2 + ... + n = n(n+1)/2,

получаем неравенство .

Следствиями неравенства о среднем арифметическом и среднем геометрическом будут обобщения теорем 1) и 2) о максимуме произведения и минимуме суммы, на основе которых решаются многие задачи на экстремум: произведение n положительных чисел, при постоянной сумме, принимает наибольшее значение, когда все эти числа равны; сумма n положительных чисел, при постоянном произведении, принимает наименьшее значение, когда все эти числа равны. Обратим внимание, что среднее арифметическое, как и среднее квадратичное, имеет смысл не только для положительных, но и для произвольных чисел a1,a2,...,an, при этом справедливо неравенство m2≤d2. В случае, например, двух слагаемых оно принимает вид

и легко следует из тождественного неравенства (a1 - a2)2