высот, лишь с той разницей, что эти линии дают сразу по две диаметрально противоположные точки пересечения. Теоремы косинусов и синусов в сферической геометрии приобретают несколько необычный вид: для треугольника ABC с углами A,B,C и противолежащими сторонами соответственно a, b и c (напомним, что стороны измеряются как соответствующие центральные углы):
cos c = cos a·cos b + sin a·sin b·cos C (теорема косинусов)
и (теорема синусов).
Сферическая геометрия представляет собой своеобразный мост между планиметрией и стереометрией, так как сферические многоугольники получаются в пересечении сферы с многогранными углами с вершинами в центре сферы, сферические окружности - в пересечении сферы с коническими поверхностями и т.д. (рис. 4). Все теоремы о сферических треугольниках можно переформулировать в терминах трехгранных углов; в частности, две последние формулы часто называют теоремами косинусов и синусов для трехгранного угла (рис. 5).
Рис. 4
Рис. 5
Интересно, что исторически эти теоремы предшествовали аналогичным теоремам плоской тригонометрии, поскольку потребность людей в знаниях по астрономии, необходимых для исчисления времени, возникла прежде других потребностей человека, связанных с измерением углов. Исходя из геоцентрической гипотезы Вселенной, древнегреческие астрономы рассматривали Землю как шар, находящийся в центре небесной сферы, которая равномерно вращается около своей оси. При изучении закономерностей движения светил возникли многочисленные математические задачи, связанные со свойствами сферы и фигур, которые образуют на ней большие окружности.
Автором первого капитального сочинения о «сферике» - так называли сферическую геометрию древние греки - был, по-видимому, математик и астроном Евдокс Книдский (ок. 408-355 гг. до н.э.). Но самым значительным произведением была «Сферика» Менелая Александрийского, греческого ученого, жившего в I в., который обобщил результаты своих предшественников и получил большое количество новых результатов. Построена его книга аналогично «Началам» Евклида, и долгое время она служила учебником для астрономов. В IX-XIII вв. «Сферика», переведенная на арабский язык, внимательно изучалась математиками Ближнего и Среднего Востока, откуда в XII в., в переводе с арабского, стала известна в Европе.
Сферическая геометрия нужна не только астрономам, штурманам морских кораблей, самолетов, космических кораблей, которые по звездам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, а также при геодезических съемках больших территорий поверхности Земли, когда становится необходимым учитывать ее шарообразность.
ТЕОРЕМА
Теорема - высказывание, правильность которого установлена при помощи рассуждения, доказательства. Примером теоремы может служить утверждение о том, что сумма величин углов произвольного треугольника равна 180°. Проверить это можно было бы опытным путем: начертить треугольник, измерить транспортиром величины его углов и, сложив их, убедиться, что сумма равна 180° (во всяком случае, в пределах той точности измерения, которую допускает транспортир). Такую проверку можно было бы повторить несколько раз для различных треугольников. Однако справедливость этого утверждения устанавливается в курсе геометрии не опытной проверкой, а при помощи доказательства, которое убеждает нас в том, что это утверждение справедливо для любого треугольника. Таким образом, утверждение о сумме углов треугольника является теоремой.
В формулировках теорем, как правило, встречаются слова «если..., то...», «из... следует...» и т.д. В этих случаях для сокращения записи используют знак . Возьмем в качестве примера теорему о том, что точка M, одинаково удаленная от двух точек A и B, принадлежит оси симметрии этих точек (рис. 1). Ее можно подробнее сформулировать так: (для любых точек A,B,M) (M принадлежит оси симметрии точек A и B).
Рис. 1
Аналогичным образом могут быть записаны и другие геометрические теоремы: сначала идет разъяснительная часть теоремы (описывающая, какие точки или фигуры рассматриваются в теореме), а затем - два утверждения, соединенные знаком . Первое из этих утверждений, стоящее после разъяснительной части и перед знаком , называется условием теоремы, второе, стоящее после знака , называется заключением теоремы.
Меняя местами условие и заключение и оставляя без изменения разъяснительную часть, мы получаем новую теорему, которая называется обратной первоначальной. Например, для рассмотренной выше теоремы обратной будет следующая: (для любых точек A,B,M) (точка M принадлежит оси симметрии точек A и B) (MA=MB). Короче: если точка M принадлежит оси симметрии точек A и B, то точка M одинаково удалена от точек A и B. В данном случае и исходная теорема, и обратная ей теорема справедливы.
Однако из того, что некоторая теорема верна, не всегда следует, что обратная ей теорема также верна. Например, теорема: (точка C не принадлежит прямой AB) (AB
Рис. 2
Таким образом, доказав некоторую теорему, мы еще не можем утверждать, что верна и обратная теорема. Справедливость обратной теоремы требует отдельного доказательства.
В алгебре примерами теорем могут служить различные тождества, например равенства:
(a + b)2 = a2 + 2ab + b2,
a2-b2 = (a+b)(a-b),
an - bn = (a-b)(an-1+ an-2b + an-3b2 +...+ abn-2 + bn-1).
Они выводятся (доказываются), исходя из аксиом, и потому являются теоремами. Другим примером теорем в алгебре может служить теорема Виета о свойствах корней квадратного уравнения.
Большую роль в математике играют так называемые теоремы существования, в которых утверждается лишь существование какого-либо числа, фигуры и т.п., но не указывается, как это число (или фигура) могут быть найдены. Например: всякое уравнение xn + a1xn-1 + a2xn-2+...+ an-1x + an = 0 с действительными коэффициентами имеет при нечетном n хотя бы один действительный корень, т.е. существует число x0∈R, являющееся корнем этого уравнения.
Некоторым видам теорем дают особые названия, например лемма, следствие. Они имеют дополнительный оттенок. Леммой обычно называют вспомогательную теорему, саму по себе мало интересную, но нужную для дальнейшего. Следствием называют утверждение, которое может быть легко выведено из чего-то ранее доказанного.
Иногда теоремой называют то, что правильнее было бы называть гипотезой. Например, «великая теорема Ферма» (см. Ферма великая теорема), утверждающая, что уравнение xn + yn = zn не имеет целых положительных решений при n>2, пока не доказана.
Наряду с аксиомами и определениями теоремы являются основными типами математических предложений. Важные факты каждой математической науки (геометрии, алгебры, теории функций, теории вероятностей и т.д.) формулируются в виде теорем. Однако овладение математикой не сводится к тому, чтобы изучить аксиомы, определения и основные теоремы. Математическое образование включает также умение ориентироваться в богатстве фактов математической теории, владение основными методами решения задач, понимание лежащих в основе математики идей, умение применять математические знания при решении практических задач.
Не менее важны пространственное представление, навыки графического «видения», умение находить примеры, иллюстрирующие то или иное математическое понятие, и т.д. Таким образом, теоремы составляют только формальный «остов» математической теории, и знакомство с теоремами представляет собой лишь начало глубокого овладения математикой.
ТЕТРАЭДР
Тетраэдр, или треугольная пирамида, - простейший из многогранников, подобно тому как треугольник - простейший из многоугольников на плоскости. Слово «тетраэдр» образовано из двух греческих слов: tetra - «четыре» и hedra - «основание», «грань». Тетраэдр ABCD задается четырьмя своими вершинами - точками A,B,C,D, не лежащими в одной плоскости; грани тетраэдра - четыре треугольника; ребер у тетраэдра шесть. В отличие от произвольной n-угольной пирамиды (при n≥4) в качестве основания тетраэдра может быть выбрана любая его грань.
Многие свойства тетраэдров сходны с соответствующими свойствами треугольников. В частности, 6 плоскостей, проведенных через середины ребер тетраэдра перпендикулярно к ним, пересекаются в одной точке. В этой же точке O пересекаются и 4 прямые, проведенные через центры описанных около граней окружностей перпендикулярно к плоскостям граней, и O является центром описанной около тетраэдра сферы (рис. 1). Аналогично 6 биссекторных полуплоскостей тетраэдра, т. е. полуплоскостей, делящих двугранные углы при ребрах тетраэдра пополам, тоже пересекаются в одной точке - в центре вписанной в тетраэдр сферы - сферы, касающейся всех четырех граней тетраэдра. Любой треугольник имеет, вдобавок к вписанной, еще 3 вневписанные окружности (см. Треугольник), а вот тетраэдр может иметь любое число – от 4 до 7 - вневписанных сфер, т.е. сфер, касающихся плоскостей всех четырех граней тетраэдра. Всегда существуют 4 сферы, вписанные в усеченные трехгранные углы, один из которых показан на рис. 2, справа. Еще 3 сферы могут быть вписаны (не всегда!) в усеченные двугранные углы при ребрах тетраэдра - один из них показан на рис. 2, слева.
Рис. 1
Рис. 2
Для тетраэдра существует еще одна возможность его взаимного расположения со сферой - касание с некоторой сферой всеми своими ребрами (рис. 3). Такая сфера - иногда ее называют «полувписанной» - существует лишь в том случае, когда суммы длин противоположных ребер тетраэдра равны: