1-x2/2!+x4/4!-x6/6!.... Если взять несколько первых членов этого ряда, мы получим приближения функции cos x с помощью многочленов. На рис. 9 показано, как графики этих многочленов с ростом их степени все лучше приближают функцию cos x.
Рис. 9
Название «синус» происходит от латинского sinus - «перегиб», «пазуха» - представляет собой перевод арабского слова «джива» («тетива лука»), которым обозначали синус индийские математики. Латинское слово tangens означает «касательная» (см. рис. 6; AB - касательная к окружности). Названия «косинус» и «котангенс» представляют собой сокращения терминов complementi sinus, complementi tangens («синус дополнения», «тангенс дополнения»), выражающих тот факт, что cos φ и ctgφ равны соответственно синусу и тангенсу аргумента, дополнительного к φ до π/2: cosφ = sin(π/2-φ), ctgφ=tg(π/2-φ).
ТРИГОНОМЕТРИЯ
Тригонометрия - математическая дисциплина, изучающая зависимость между сторонами и углами треугольника.
Казалось бы, тригонометрию можно считать лишь частью геометрии, однако тригонометрические функции, с помощью которых связываются элементы треугольника, - это объект изучения математического анализа, а тригонометрические уравнения - уравнения, в которых неизвестные являются аргументами тригонометрических функций, - изучаются методами алгебры. Таким образом, тригонометрия - раздел математики, использующий достижения других важных ее разделов.
Основные формулы тригонометрии задаются теоремой синусов (см. Синусов теорема) и теоремой косинусов (см. Косинусов теорема). Кроме них часто применяются теорема тангенсов, открытая в XV в. немецким математиком И. Региомонтаном,
, , ,
и формулы К. Мольвейде (немецкого математика конца XVIII - начала XIX в.):
, .
Здесь через a,b,c обозначены длины сторон треугольника, а через A,B,C - соответственно величины противоположных им углов.
Помимо теоремы косинусов углы треугольника могут быть также выражены через его стороны с помощью формул:
, , ,
где p - полупериметр треугольника.
Площадь треугольника помимо формулы Герона (см. Герона формула) может быть выражена с помощью тригонометрии через стороны и углы треугольника еще несколькими способами:
S = 1/2 ab sin C, , S = p2 tg A/2 tg B/2 tg B/2.
Тригонометрия возникла из практических нужд человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт.
Зачатки тригонометрических познаний зародились в древности. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вспомогательным разделом.
Древнегреческие ученые разработали «тригонометрию хорд», изложенную выдающимся астрономом Птолемеем (II в.) в его работе «Альмагест». Птолемей вывел соотношения между хордами в круге (выражавшиеся словесно ввиду отсутствия в то время математической символики), которые равносильны современным формулам для синуса половинного и двойного угла, суммы и разности двух углов:
, sin 2α = 2 sin α cos α, sin (α±β) = sin α cosβ ± sin β cos α.
Важный шаг в развитии тригонометрии был сделан индийскими учеными, которые заменили хорды синусами. Это нововведение перешло в VIII в. в арабоязычную математику стран Ближнего и Среднего Востока, где тригонометрия постепенно превратилась из раздела астрономии в самостоятельную математическую дисциплину. Помимо синуса были введены и другие тригонометрические функции, и для них были составлены таблицы.
Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функций сформировались в процессе долгого исторического развития. Если, например, при введении основных тригонометрических понятий представляется естественным принимать радиус тригонометрического круга (рис. 1) равным единице, то эта, казалось бы, простая идея была усвоена только в Х-XI вв. Если мы понимаем под синусом угла α в прямоугольном треугольнике OBC отношение катета BC (линия синуса) к гипотенузе OC (т.е. радиусу единичной окружности), то в средние века термином «синус» обозначали саму линию синуса BC. То же относится к косинусу, под которым понималась линия косинуса OB, и другим тригонометрическим функциям.
Рис. 1
Лишь постепенно, благодаря введению новых понятий, а также в результате разработки и усовершенствования математической символики, тригонометрия приобрела современный вид, наиболее удобный для решения вычислительных задач. Окончательный вид она приобрела в XVIII в. в трудах Л. Эйлера.
Существует также сферическая тригонометрия, рассматривающая соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов. Она является частью сферической геометрии и возникла исторически раньше тригонометрии на плоскости из потребностей практической астроном
УГОЛ
Угол - самая простая геометрическая фигура после точки, прямой, луча и отрезка. Если в плоскости из точки O провести два различных луча OA и OB, то они разобьют плоскость на две части, каждая из которых называется углом с вершиной O и сторонами OA и OB. Угол I на рис. 1 выпуклый (см. Выпуклые фигуры), угол II невыпуклый. Если лучи OA и OB дополняют друг друга до прямой, то оба получающиеся угла выпуклые и называются развернутыми. Как геометрические фигуры они совпадают с полуплоскостями, на которые плоскость разбивается прямой AB (рис. 2). Если в одном из развернутых углов AOB провести луч OC, то он разделит угол AOB на два выпуклых угла AOC и COB, которые называются смежными (рис. 2). Две пересекающиеся в точке O прямые AB и CD разбивают плоскость на две пары выпуклых так называемых вертикальных между собой углов: AOC и BOD, AOD и BOC (рис. 3). Вертикальные углы, например AOC и BOD, равны между собой: один из них можно совместить с другим поворотом около точки O.
Рис. 1
Рис. 2
Рис. 3
Луч, делящий угол пополам и имеющий начало в вершине угла, называется его биссектрисой. Биссектриса развернутого угла делит его на два равных смежных угла, называемых прямыми углами. Биссектрису угла легко построить с помощью циркуля и линейки, даже не меняя раствор циркуля (рис. 4). Для развернутого угла просто построить и трисектрисы, или, как говорят, выполнить его трисекцию, т.е. разделить угол на три равные части. Еще в V в. до н.э. была сформулирована задача о трисекции произвольного угла (см. Классические задачи древности), но лишь в XIX в. математики доказали, что разрешить эту задачу с помощью только циркуля и линейки в общем случае нельзя.
Рис. 4
Конечно, это не означает, что трисектрисы не существуют. На рис. 5 показано, как выполняется трисекция угла AOB с помощью циркуля и линейки с двумя отмеченными на ней точками P и Q: сначала строится окружность S радиуса PQ, а потом линейка помещается так, чтобы ее край проходил через точку B, точка Q лежала на S, а точка P - на дополнительном к OA луче OA' (простой подсчет углов равнобедренных треугольников OPQ и BOQ дает, что угол APB втрое меньше угла AOB).
Рис. 5
Большое значение для теории и практики имеет определение величины или меры угла. Основное свойство меры угла должно заключаться в том, чтобы равные углы имели одинаковую меру. Общеприняты два измерения углов: (1) градусное, при котором углы измеряются в градусах (по определению угол в 1° - это 1/180 часть развернутого угла) и его долях (1/60 градуса - угловая минута, 1'; 1/60 минуты - угловая секунда, 1"), и (2) радианное, при котором радианная мера угла AOB определяется как отношение длины дуги, высекаемой этим углом на произвольной окружности с центром O, к радиусу окружности. Развернутый угол равен 180°, или πr/r = π радианам, откуда получаются формулы, связывающие градусную и радианную меры угла:
(α/π ·180)°, A°=A/180 ·π рад.
В частности,
1°=π/180=0,017453...
(В последнем случае мы не записали размерность «рад»; так часто поступают, основываясь на том, что по своему определению радианная мера безразмерна.) Радианная мера применяется в математическом анализе (например, при определении числовых значений тригонометрических функций), в механике (при рассмотрении вращения около точки или оси и других процессов, описываемых с помощью тригонометрических функций, - колебаний, волн и т.д.). Градусная мера используется в элементарной геометрии (каждый, видимо, хорошо знаком с транспортиром - измерителем углов на чертежах), в геодезии при измерениях на местности (для измерения углов на местности используют весьма точный прибор - теодолит). Иногда углы измеряют в долях прямого угла, обозначаемого буквой d; в морской навигации традиционно используют в качестве основной единицы румб, равный 1/16 развернутого угла. Для краткости вместо слов «величина (мера) угла» часто говорят просто «угол». Так, в известной теореме: сумма углов треугольника равна 180° (или π, или 2d) - под углами понимаются как раз величины углов.
Углы, меньшие прямого, называются острыми, а углы, большие прямого, но меньшие развернутого, - тупыми. Мера выпуклого угла заключена между 0° и 180° (или 0 и π), невыпуклого - между 180° и 360° (или между π и 2π). Удобно ввести в рассмотрение полный угол - угол, образуемый лучом OA при полном обороте около точки O, а также нулевой угол - угол, образованный двумя совпадающими лучами. Эти углы имеют меру - соответственно 360°= 2π рад и 0°= 0 рад. Иногда градус определяют как 1/360 часть полного угла.
В планиметрии рассматривают еще один тип углов - углы поворотов. Во-первых, они имеют знак: плюс, если поворот осуществляется против хода часовой стрелки, и минус, если поворот - по ходу часовой стрелки. Поворот около точки O на угол α обозначается