Арифметической прогрессией называют последовательность (an), у которой каждый член, начиная со второго, больше (или меньше) предыдущего на постоянное (для данной прогрессии) число d. Число d называют разностью арифметической прогрессии. Другими словами, арифметическая прогрессия – это последовательность, заданная по правилу: a1 и d даны, an+1 = an + d при n ≥ 1.
Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому последующего и предыдущего членов:
.
Это отражено в названии последовательности: арифметическая прогрессия. Верно и более общее свойство:
при n≥k.
Справедливы следующие формулы (через Sn обозначена сумма первых n членов арифметической прогрессии):
an = a1 + (n-1)d, (1)
, (2)
. (3)
С формулой (3) связан интересный эпизод из жизни немецкого математика К.Ф. Гаусса (1777-1855). Когда ему было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от 1 до 40 включительно:
1+2+3+4+5+...+40».
Каково же было удивление учителя, когда один из учеников (это был Гаусс) через минуту воскликнул: «Я уже решил». Большинство учеников после долгих подсчетов получили неверный результат. В тетради Гаусса было только одно число, но зато верное.
Вот схема его рассуждений. Сумма чисел в каждой паре равна 41:
1, 2, 3, ... , 20
+
40, 39, 38, ..., 21
------------------
41, 41, 41, ..., 41
Таких пар 20, поэтому искомая сумма равна 41·20 = 820.
Арифметические прогрессии и их свойства изучались математиками с древних времен. Греческих математиков интересовала связь прогрессий с так называемыми многоугольными числами (см. Фигурные числа), вычислением площадей, объемов, красивыми числовыми соотношениями типа:
1 = 12 1 + 3 = 22 1 + 3 + 5 = 32 1 + 3 + 5 + 7= 42 | 1 = 13 3 + 5 = 23 7 + 9 + 11 = 33 13 + 15 + 17 + 19 = 43 |
Большой популярностью даже в наши дни пользуются магические квадраты (см. Магические и латинские квадраты). Это квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны (рис. 1). Такой магический квадрат изображен на гравюре немецкого художника А. Дюрера «Меланхолия».
Рис. 1
АСИМПТОТА
Асимптота кривой – это прямая, к которой кривая приближается сколь угодно близко при удалении в бесконечность. Представьте себе мчащийся по прямолинейному шоссе автомобиль и всадника, скачущею по полю с той же скоростью, но направленной в каждый момент на автомобиль. Маршрут всадника в этом случае будет кривой линией, называемой трактрисой, для которой линия шоссе является асимптотой. Если кривая, заданная уравнением y=f(x), удаляется в бесконечность при приближении x к конечной точке a, то прямая x = a называется вертикальной асимптотой этой кривой. Такими асимптотами являются прямая x=0 для гиперболы y = 1/x, каждая из прямых x=kπ(k = 0,±1,±2,...) для функции y = ctg x (рис. 1).
Рис. 1
Помимо вертикальной асимптоты x=0 гипербола y = 1/x имеет еще и горизонтальную асимптоту y=0, как и график функции y = e-xsin x, однако он, в отличие от гиперболы, пересекает свою горизонтальную асимптоту в бесконечном множестве точек (рис. 2).
Рис. 2
У кривой, носящей название «декартов лист» (рис. 3), уравнение которой x3 + y3 - 3axy = 0, имеется наклонная асимптота, как и у кривой y = x + 1/x2 (рис. 4). Коэффициенты k и b в уравнении прямой y = kx + b, являющейся наклонной асимптотой кривой y=f(x) при стремлении к плюс или минус бесконечности, находятся как пределы:
, .
Горизонтальная асимптота является частным случаем наклонной при k = 0.
Рис. 3
Рис. 4
Исследование асимптот позволяет более четко представить поведение графика функции, поскольку свойства функции вблизи ее асимптоты очень близки к свойствам асимптоты – линейной функции, свойства которой хорошо изучены. Систематическое использование этого свойства породило целое направление в современной математике - «асимптотические методы исследования». Таким образом, понятие, возникшее еще в Древней Греции, переживает в наше время второе рождение.
Не у всякой кривой, уходящей в бесконечность, есть асимптота. Например, известная вам кривая парабола асимптот не имеет.
БЕРНУЛЛИ ЛЕМНИСКАТА
Лемниската – кривая, у которой произведение расстояний каждой ее точки до двух заданных точек – фокусов – постоянно и равно квадрату половины расстояния между ними. Эта линия изображена на рисунках, по форме напоминает восьмерку. Ее автор – швейцарский математик Якоб Бернулли (1654-1705) дал этой кривой поэтическое название «лемниската». В античном Риме так называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх.
Уравнение лемнискаты в прямоугольных координатах: (x2 + y2)2 - 2a2(x2 - y2) = 0, уравнение в полярных координатах: p2 = 2a2 cos 2φ.
ВЕКТОР
Вектор – одно из основных геометрических понятий. Вектор характеризуется числом (длиной) и направлением. Наглядно его можно представить себе в виде направленного отрезка, хотя, говоря о векторе, правильнее иметь в виду целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковую длину и одинаковое направление (рис. 1). Примерами физических величин, которые имеют векторный характер, могут служить скорость (поступательно движущегося тела), ускорение, сила и др.
Рис. 1
Понятие вектора появилось в работах немецкого математика XIX в. Г. Грассмана и ирландского математика У. Гамильтона; затем оно было охотно воспринято многими математиками и физиками. В современной математике и ее приложениях это понятие играет важнейшую роль. Векторы применяются в классической механике Галилея-Ньютона (в ее современном изложении), в теории относительности, квантовой физике, в математической экономике и многих других разделах естествознания, не говоря уже о применении векторов в различных областях математики.
Каждый из направленных отрезков, составляющих вектор (рис. 1), можно назвать представителем этого вектора. Вектор, представителем которого является направленный отрезок, идущий от точки A к точке B, обозначается через . На рис. 1 имеем , т.е. и - это один и тот же вектор (представителями которого являются оба направленных отрезка, выделенных на рис. 1). Иногда вектор обозначают малой буквой со стрелкой: , .
Вектор, изображаемый направленным «отрезком», у которого начало и конец совпадают, называется нулевым; он обозначается через , т.е. . Два параллельных вектора, имеющих одинаковые длины, но противоположные направления, называются противоположными. Если вектор обозначен через , то противоположный ему вектор обозначается через .
Назовем основные операции, связанные с векторами.
I. Откладывание вектора от точки. Пусть - некоторый вектор и A - точка. Среди направленных отрезков, являющихся представителями вектора , имеется направленный отрезок, начинающийся в точке A. Конец B этого направленного отрезка называется точкой, получающейся в результате откладывания вектора от точки A (рис. 2). Эта операция обладает следующим свойством:
I1. Для любой точки A и любого вектора существует, и притом только одна, точка B, для которой .
Рис. 2
Сложение векторов. Пусть и - два вектора. Возьмем произвольную точку A и отложим вектор от точки A, т.е. найдем такую точку B, что (рис. 3). Затем от точки B отложим вектор , т. е. найдем такую точку C, что . Вектор называется суммой векторов и и обозначается через . Можно доказать, что сумма не зависит от выбора точки A, т.е. если заменить A другой точкой A1, то получится вектор , равный (рис. 3). Из определения суммы векторов вытекает, что для любых трех точек A,B,C справедливо равенство
I2:
(«правило трех точек»). Если ненулевые векторы и не параллельны, то их сумму удобно находить с помощью правила параллелограмма (рис. 4).
Рис. 3
Рис. 4
II. Основные свойства суммы векторов выражают следующие 4 равенства (справедливые для любых векторов , , ):
II1. .
II2. .
II3. .
II4. .
Заметим еще, что сумма нескольких векторов находится последовательным нахождением суммы двух из них. Например: .
При этом, в каком бы порядке мы ни складывали заданные векторы, результат (как это вытекает из свойств, названных в пунктах II1, и II2) всегда будет одним и тем же. Например:
.
Далее, геометрически сумма нескольких векторов может быть получена следующим образом: надо направленные отрезки, являющиеся представителями этих векторов, последовательно отложить друг за другом (т.е. так, чтобы начало второго направленного отрезка совпадало с концом первого, начало третьего – с концом второго и т.д.); тогда вектор будет иметь своим представителем «замыкающий» направленный отрезок, идущий от начала первого к концу последнего (рис. 5). (Заметим, что если при таком последовательном откладывании получается «замкнутая векторная ломаная», то .)
Рис. 5
III. Умножение вектора на число. Пусть - ненулевой вектор и k - отличное от нуля число. Через обозначается вектор, определяемый следующими двумя условиями: а) длина вектора равна