Энциклопедия аномальных явлений — страница 7 из 53

Глава II.МНОГОМЕРНОСТЬ ПРОСТРАНСТВА И ВРЕМЕНИ

1. КОНЦЕПЦИЯ МНОГОМЕРНОСТИ ПРОСТРАНСТВА

Наша неспособность реально оценивать окружающих мир проявляется и в монополизме четырехмерного континуума при формировании общепринятых взглядов. Мы представляем себе только три пространственных и одну временную координаты. Таковы предельные возможности нашего восприятия, ограниченного "световым пространством". Поэтому мы подсознательно стремимся все, что познаем, свести к закономерностям понятного нам четырехмерного континуума. Всякие попытки выйти за этот привычный барьер вызывают у нас вполне понятные чувства протеста.

Вместе с тем есть основания предполагать, что ограниченность нашего миропредставления четырехмерным континуумом, составляющим базу современной физики, не позволяет понять многие явления, с которыми мы сталкиваемся повседневно. Одним из возможных путей коренного пересмотра наших мировоззренческих позиций является признание реальности физической многомерности пространства и времени, т. е. что хорошо известный четырехмерный континуум "пространство-время" не исчерпывает всего многообразия строения и форм существования материи.

Идея многомерности пространства не нова. Ее геометрическая интерпретация получила свое воплощение еще в конце XVIII — начале XIX века в работах Мебиуса, Якоби, Кели, Плюккера и др. В наиболее обобщенном виде многомерная геометрия нашла отражение работах немецкого математика Римана (1854 г.), а также в геометрии постоянной кривизны нашего соотечественника Лобачевского. Наконец, в 1908 году немецкий математик Миньковский применил ее в специальной теории относительности.

Несмотря на то, что многомерная геометрия в большинстве случаев рассматривалась как математическая абстракция, не имеющая никакого физического смысла, ее свойства и закономерности привели к попыткам физического толкования этой концепции. В большинстве случаев они имели мистический, спекулятивный характер, не имели веских оснований и были лишены конкретного физического содержания. Предполагалось, что существует некоторая неопределенная, недоступная для человека сфера, где обитают духи и другие сверхъестественные существа. Иногда подобные толкования использовались для подтверждения и объяснения церковных догм (объяснение мест существования рая, ада и т. д.).

В 1878 году австрийский астрофизик Цельнер высказал предположение, что только четвертое пространственное измерение может объяснить многие непонятные явления человеческой психики. Но он не смог привести достаточно Убедительных доказательств этой гипотезы. Кроме того, он ссылался на ряд факторов, которые оказались несостоятельными. Кроме Цельнера, подобные неудачные попытки были сделаны и многими другими исследователями, например в России Бутлеровым, Успенским и др.

В 1921 году польский физик Калуца высказал гипотезу, что гравитацию и магнетизм можно объединить в единую систему, если допустить существование четвертого пространственного измерения, т. е. если перейти от четырехмерного к пятимерному континууму (пятым измерением остается время) (курсив — ред.). В этом случае гравитация и магнетизм могут рассматриваться как следствие искривления трехмерного пространства в четвертом измерении и создаются предпосылки для создания теории единого поля.

В 1926 году швед Клейн, пытаясь разрешить загадку пятого измерения, высказал предположение, что оно "свернуто" до очень малых размеров, а потому не наблюдается нами. Эти работы положили начало нескольким более поздним гипотезам по многомерной структуре пространства, изложенным в ряде работ по квантовой физике, причем количество пространственных измерений в этих гипотезах варьируется в очень широких пределах. В последние десятилетия (60–80 годы) была разработана теория суперструн, которая уже предполагает отказ о г понятия "частица" и замену ее многомерной струной.

Таким образом, в квантовой физике концепция многомерности пространства постепенно завоевывает позиции. Это связано с тем, что многие явления, наблюдаемые в микромире, вообще не объяснимы без привлечения многомерности. Однако, признавая факт существования многомерности пространства в микромире, большинство физиков отрицают допустимость использования этой концепции при рассмотрении проблем макромира (курсив — ред.).

Но даже и в микромире многомерность в какой-то степени пытаются свести к привычному четырехмерному континууму. Приводится, например, такая аналогия. Если представить себе трубу, имеющую некоторые геометрические параметры (длину, диаметр, толщину стенок), и отнести ее на значительное расстояние от наблюдателя, то она будет представляться ему не как объемный объект, а как тонкая линия, не имеющая геометрических размеров, кроме длины. Таким образом, предполагается, что высшие пространственные измерения существуют где-то за гранью реального восприятия окружающего мира и могут, рассматриваться как элементы четырехмерного континуума без нарушения его структуры и строения.

Пожалуй, основной причиной этого является то, что большинство физиков рассматривают многомерность пространства как объективную реальность, которая может проявляться (или не проявляться) в том или другом случае. Академик Э. Кольман писал по этому поводу: "Гипотезы о том, что вне пределов доступного нам опыта пространство может оказаться, например, четырехмерным или двухмерным, а время, скажем, двухмерным, не могут быть подкреплены пока никакими фактами. Однако они не содержат также ничего противоречащего научным знаниям, ничего сверхъестественного".

Следствием такой позиции являются попытки выявить случаи, где проявляется многомерность, рассчитать количество измерений и т. п. Мы считаем, что это принципиально ошибочная позиция. Правильнее предположить, что многомерность — это не объективная реальность, а форма восприятия объективной реальности. Мир всюду многомерен, но его восприятие ограничивается возможностями наших органов чувств и способностью осознания получаемой информации. Для нас существует предел осознаваемой мерности, через который мы переступить не можем.

Поясним это примером. Предположим, что мы вошли в темную комнату, стены которой украшены прекрасной росписью. Но наши органы чувств (глаза) не воспринимают света, отраженного от стен и предметов в этом помещении. Поэтому мы теряем способность оценивать окружающую среду, мы не видим росписи стен, не может представить себе ни размера комнаты, ни ее конфигурации. При перемещении на ощупь, по набитым шишкам мы сможем в какой-то степени получить некоторое представление о том, что нас окружает, но оно будет очень неполным. Мы не сможем судить о росписи стен, да и многие другие детали для нас окажутся недоступными.

В геометрической интерпретации мерность определяется количеством взаимно перпендикулярных прямых, которые можно восстановить из одной точки. Так, на плоскости можно вычертить только два перпендикуляра (двухмерная система). В объеме таких прямых можно построить уже три (трехмерная система). Исходя из этой логики, четырехмерная система должна допускать построение из одной точки четырех взаимно перпендикулярных линий. По нашим представлениям, это сделать невозможно.

Взаимосвязь между системами измерения иллюстрируется на рис. 3. Точка представляет собой нуль-мерную систему, она не имеет измерений. Если точку перемещать, она образует линию — одномерную систему с одной координатной осью X. При перемещении линии образуется двухмерная система — плоскость, имеющая уже две координатных оси — X и Y. Наконец, при перемещении плоскости образуется трехмерная система — объем, имеющая три координатных оси — X, Y, Z. Все, что было изложено, хорошо нам знакомо и не вызывает возражений.

Гипотеза о многомерности пространства требует возможности, для формирования четвертого измерения, переместить объем по четвертой координате, но как это сделать? Наше воображение отказывается представить себе такую возможность, оно монополизировано тремя пространственными измерениями, а дня четвертого просто не остается места.

Рис. 3. Взаимосвязь между системами измерения.

Но, как уже указывалось, мерность не является объективной реальностью, а только формой ее восприятия и тесно связана с нашими возможностями восприятия окружающего мира, пределом осознаваемой мерности. Если мы не можем представить себе существование высших измерений, то это не может служить доказательством невозможности их существования. Пытаясь разрешить эту проблему, немецкий физик и физиолог Герман Гельмгольц (1812–1894) предположил, что есть существа, которые, в отличие от нас, способны осознавать только два измерения, и предложил рассмотреть взаимосвязь между пространственными измерениями. Эти гипотетические существа были названы "плоскатики". Данный прием позволяет — по аналогии взаимоотношения плоскатика с высшим для него третьим измерением — прояснить наши взаимосвязи с недоступными к нашему восприятию четвертым, пятым и т. д. пространственными измерениями.

Для плоскатика весь мир, доступный его восприятию, ограничивается только плоскостью, в которой он обитает. Он не может воспринимать что-либо находящееся за пределами этой плоскости. Для нас таким пределом является объем.

Таким образом, многомерность может рассматриваться с позиций геометрической и физической. Геометрическая концепция многомерности достаточно хорошо разработана и рассматривается как абстрактный, чисто математический прием, который не обязательно должен иметь физическую аналогию. Геометрическая многомерность используется при решении определенных конкретных инженерных задач и в ряде случаев, позволяет получить полезные результаты. Так, например, она успешно используется при исследовании разного рода многокомпонентных систем, где каждое измерение рассматривается как определенный показатель системы, а в совокупности n-мерный график позволяет выявить состояние системы в зависимости от комплексного измерения всех составляющих.