Вся верхняя часть боковых стен — форточка. Кровля почти плоская, и «борта» дают нормальную вентиляцию. Вентиляция регулируется остроумнейшим способом — за секунды. Закрывать еще проще: снял прищепку — пленка падает вниз сама.
Очень важно хорошо подтягивать растения — вдвое легче ухаживать! И вот появилась «мелочь» — умный крючок: подмотал на пару оборотов — и куст встал, как солдатик.
За десять лет Юрий узнал о тепличных томатах почти все. Например, выяснил: тепло нужнее в почве, чем в воздухе — и собрал простую систему подпочвенного обогрева. Обнаружил: высота теплицы очень сильно влияет на урожай! И его теплицы стали намного выше. Стал мульчировать почву — и окончательно отступили сорняки, уменьшился расход воды на поливы, а урожай вырос. Его томаты плодоносят с апреля по декабрь без всяких химических обработок.
А в голове мастера — новые задумки. Облегчать труд и повышать урожай — самая интересная работа, и она бесконечна.
Когда рукопись была почти готова, мой добрый знакомый из г. Ипатово Виктор Шарапов прислал книгу Б. Эрата и Д. Вулстона «Теплица в вашем доме»(Стройиздат, 1994). Книга оказалась чудесной. Это детальный анализ всех аспектов строительства северных теплиц, и прежде всего — пристроенных к дому в виде зимних садов. Привожу то, что показалось самым интересным.
1. Профессор Росси разработал форму теплицы, максимально улавливающую излучение при низком стоянии Солнца. Нет предела человеческому уму! Оказывается, отражатели можно использовать не только внутри, но и снаружи (рис. 23)! Получается «теплица-рефлектор». В снеговых регионах наружным отражателем служит снег. Южане могут и белую плиточку перед тепличкой постелить. А внутренние отражатели — белая краска или зеркальные пленки (отражающие поверхности обозначены пунктиром).
Рис. 23
Особенно эффективна такая теплица, когда она «утоплена» в дом (на том же рисунке слева — вид сверху). Установлено: через щели теряется намного больше тепла, чем через герметичное одинарное стекло. Проблема одинарного стекла одна: зимой оно леденеет от конденсата. В целом чем меньше площадь стекла, тем меньше потери тепла. Стены дома согревают теплицу, хорошо сглаживая температуру и спасая растения от весенних морозов. Зимой для накопления тепла стена и пол «рефлектора» затемняются черной пленкой, а летом осветляются белой или зеркальной.
2. Вместо фрамуг в пристроенных теплицах удобно использовать вытяжные трубы. Тяга в трубе зависит от ее высоты и бывает весьма нехилая! Для теплички в 20 м2 вытяжка сечением в четверть квадратного метра плюс легкое притенение в сумме эффективнее, чем вентилятор в 140 Вт!
Чем выше труба, тем сильнее тяга. Каждый метр вытяжки равносилен расширению сечения на 12–15 % или снижению температуры на 1,5–2 °C. Так, вытяжка высотой 7 м и сечением в половину квадратного метра сама, без всякого вентилятора, за минуту высасывает весь воздух из теплицы объемом 45 м3, снижая температуру с 40 до 30 °C.
3. Любителям вентиляторов пригодится расчет их мощности. Она совпадает с численным значением скорости воздушного потока, кубометров в секунду. Выяснено: хорошая вентиляция — это когда весь воздух теплицы заменяется новым за одну минуту. Иначе тепло не успевает полностью уходить. Привожу эмпирическую зависимость:
При этом вентилятору здорово помогает высота вытяжной трубы.
4. Интересный подсчет: в пристроенной тепличке площадью 25–30 м2 люди проводят около 700 часов в год: 200–отдыхают, пьют чай, и 500 часов — работают! То есть ежедневно — 1–2 часа работы. Ну, это люди, которые не умеют умно лениться. Мы просто обязаны достичь лучшего результата. 150 часов на труд и 550 на чаепития — вот это по-нашему!
Чтобы летать, не нужно нарушать закон всемирного тяготения!
Еще в начале 50-х киевский учитель физики, Александр Васильевич Иванов, создал свой первый вегетарий. В конце 60-х ему удалось получить патент. За это время вегетарий был изучен, автор получил тьму наград, власти Украины поддержали инициативу — в основном на словах. В 1971 г. А.В. Иванова не стало. В 1988 г. в 1996 г. в Киеве малым тиражом вышла необычная соавторская книга — А. А. Иванько, А. П. Калиниченко, Н. А. Шмат, «Солнечный вегетарий». Это опыт работы вегетариев, с подробными описаниями устройства и работы, чертежами строительства и проектами. Мой добрый знакомый, Олег Янчевский, любезно передал мне экземпляр этой книги. Главное из нее и привожу. Один из соавторов книги, Александр Александрович Иванько, любезно разрешил использовать рисунки из этой книги.
Эту заразительную главу уже читали многие, и некоторые даже пытались построить вегетарий. Посему я обязан сделать честное предуведомление. Попытки создать его по описанному образцу выявили много проблем, в книге не указанных. Очевидно, эксплуатация вегетария была нелегкой и во многом определялась энтузиазмом самого Иванова. Видимо, в 60-х электроэнергия стоила совсем дешево. Возможно, в книге не учтены некоторые важные особенности конструкции — писал-то ее не сам Иванов.
Думаю, конструкцию нужно продумывать заново и здорово улучшать. К примеру, выяснилось, что вентиляторы нужны очень мощные. Что самое трудное — снять летний перегрев, и на юге вентиляторы с этим не справляются — нужны притеняющие сетки. Что почвенные трубы, скорее всего, должны идти от центра радиально, и потому форма вегетария будет полукруглой. И даже закачка воздуха летом должна быть, видимо, из-под конька, а не снизу. Но несомненно одно: идея замкнутого цикла воздуха — по-настоящему умная и прорывная, и над ней стоит работать. Вот ради этого я и оставляю здесь главу о вегетарии почти в неизменном виде.
Традиционная теплица имеет три главных проблемы. 1. При низком стоянии солнца (весна, осень, зима, утро и вечер) ввиду сильного отражения под острыми углами в теплицу проникает всего 20–30 % солнечной энергии. 2. Огромные потери тепла через покрытие и невозможность запасти его внутри теплицы приводят к огромным скачкам температуры дня и ночи. 3. Прямая вентиляция, необходимая летом, уносит весь углекислый газ (главное питание растений!), часть азота и всю влагу, испаренную листьями — отсюда постоянная нужда в поливах и удобрениях.
Вегетарий, сделанный правильно, решает сразу все эти проблемы. Из опыта знаю: построить его как надо непросто. Но наш человек обожает решать трудные задачи!
Проблема 1. Строится вегетарий на склоне в 15–20°, естественном или насыпном, скатом на юг или юго-восток. При размере 4 на 5 м это вполне реально. Кровля делается плоской — стекло, а лучше сотовый поликарбонат — вот где он действительно незаменим! Результат: солнце падает перпендикулярно, и отражения — почти ноль. По данным авторов, в сравнении с обычными арочными теплицами, приход энергии солнца повышается в 4–5 раз, а утром, вечером и зимой — в 18–21 раз.
Но и это не все. Задняя стенка — капитальная (рис. 24). Собственно, это стена дома или подсобки. Она побелена, а в идеале — оклеена зеркальной пленкой. При низком солнце она — отражатель, почти удваивающий попадание лучей на почву.
Рис. 24
Сам наклон на 15° на широте Киева увеличивает зимнее поглощение лучей на 32 %. Плюс плоская кровля и экран. Чем ниже солнце, тем сильнее эффект. При стоянии солнца под углом 20° поглощается вдвое больше энергии, при 10° — втрое, при 5° — вчетверо. Уклон теплицы в 25° увеличивает поглощение низкого солнца соответственно в 2,5–4–6 раз.
Проблемы 2 и 3 решаются одним изящнейшим изобретением — замкнутым циклом воздухо- и теплообмена.
Под почвой, на глубине 30–35 см, через 55–60 см друг от друга, вдоль всей теплицы лежат пластиковые (или асбоцементные) трубы (рис. 25). Нижние их концы выведены на поверхность и прикрыты от мусора сеточкой. Верхние (северные) концы соединены в один поперечный коллектор. Из коллектора идет вертикальная труба-стояк, проложенная в капитальной стене. Она выходит на крышу, но не напрямую, а сквозь регулировочную камеру. Камера открывается в теплицу примерно на высоте 1,5 м. Снизу и сверху она ограничена заслонками, а выход в теплицу — вентиляторный. Как показали опыты наших природников, вентиляторы нужны весьма мощные, а трубы — не тоньше 150 мм.
Рис. 25
В солнечный день, даже зимой, когда снаружи –10 °C, внутри вегетария — +30–35 °C. Верхняя заслонка камеры закрыта. Вентилятор засасывает воздух в трубы и гонит его по трубам снизу вверх (рис. 26). Воздух отдает тепло почве. Остывший воздух вдувается обратно в теплицу — и снова греется. За день почва прогревается до 30° и выше — ВСЯ ПОЧВА становится аккумулятором тепла. Его запасается столько, что хватает почти на всю ночь. Ночью вентилятор продолжает работать, подавая тепло уже из почвы в воздух.
Рис. 26
В последние два десятка лет эта система широко используется в Европе, особенно в Скандинавии. Там теплый воздух закачивают и в почву, и в каменный пол, и в коллекторы внутри бассейнов, и даже в стены прилежащих комнат.
Таким образом, без всякого отопления, при дневном морозе –10° и ночном –15 °C, в вегетарии держится температура: днем — +18 °C, ночью — +12 °C.
Главное — хорошая герметизация покрытия. Для сравнения, в обычной теплице в это же время: с 9.00 до 20.00–выше 10 °C, с 12.00 до 16.00–выше 30 °C, а ночью, с 23.00 до 7.00–около нуля и ниже. Без системы автоматического регулирования нормальная температура в теплице держится лишь четверть времени суток!
На случай сильных морозов в камеру вставляется простой калорифер, и в теплицу задувается теплый воздух. На любой форс-мажор у Иванова хватало калорифера мощностью в 1,0–1.2 КВт. Но таких ночей бывает немного, да и лучше зимой выращивать зелень, не требующую подогрева.
Весной и даже нежарким летом тот же вентилятор в том же режиме может спасать теплицу от перегрева. В почве за