Эпидемия стерильности — страница 55 из 102

Как выяснилось, Пастер предлагал провести еще один эксперимент: возвращать микробы по одному до тех пор, пока животное снова не начнет жить полноценной жизнью. В начале нового тысячелетия постдокторант Гарвардской медицинской школы Саркис Мазманян организовал такое исследование. Он намеревался восстановить микробиоту с нуля, но так и не продвинулся дальше первого микроорганизма — бактерии Bacteroides fragilis.

Помимо других отклонений, у стерильных мышей были обнаружены признаки серьезного иммунодефицита. При обычных обстоятельствах белые кровяные клетки перемещаются по всему организму вместе с потоком крови и собираются в лимфатических узлах, своего рода промежуточных пунктах отдыха. Однако у очищенных от микробов мышей почти не было лимфоидной ткани, а лимфоузлов было меньше или они вообще отсутствовали. Атакующие клетки этих мышей оставались в состоянии задержки развития. А в контексте наших целей важнее всего то, что у них было меньше регуляторных Т-клеток.

Мазманян обнаружил, что введение B. fragilis в эту созданную человеком аномалию сразу же устраняет все эти дефекты[363]. Количество регуляторных Т-клеток увеличилось; лимфоидная ткань начала развиваться; иммунная система активизировалась. Кроме того, B. fragilis удалось изменить исход некоторых болезней. Еще одна бактерия, Helicobacter hepaticus, была обычным членом микробиоты диких мышей, но могла вызвать заболевания у лабораторных грызунов. От чего это зависело? Мазманян обнаружил, что если бактерия B. fragilis поступает в организм мышей первой, тогда H. hepaticus вызывает хроническое воспаление и колит.

«Это поднимает вопрос о том, что иммунная система млекопитающих, которая на первый взгляд предназначена для контроля над микроорганизмами, на самом деле сама находится под контролем микроорганизмов», — писал Мазманян (который к тому времени руководил собственной лабораторией в Калифорнийском технологическом институте) в статье, опубликованной в 2009 году в журнале Nature Reviews Immunology[364]. Иными словами, наша иммунная система, по всей вероятности, возложила определенные функции на определенных комменсалов.

На другом конце страны ученые Нью-Йоркского университета случайно обнаружили еще один микроб, играющий другую, но в равной мере важную роль. Дэн Литтмен и Ивайло Иванов купили мышей у трех разных поставщиков[365]. Все мыши были генетически идентичными, а значит, у них должны были быть идентичные иммунные системы. Однако хотя мыши от двух поставщиков действительно были неразличимыми, мыши, полученные от третьего поставщика, отличались от всех остальных. У них не было провоспалительных Т-клеток (обозначаемых как Th17), которые играют важную роль в защите от условно-патогенных микроорганизмов.

Различия в иммунном репертуаре искажали результаты всех экспериментов. Это огорчало ученых, однако появился более интересный вопрос: что лежит в основе этих различий? У мышей одинаковые гены, так почему у них разные иммунные системы?

Исследователи обнаружили, что нехватка клеток Th17 объясняется отсутствием единственного микроба. У мышей с дефицитом Th17 не было сегментированных филаментных (нитчатых) бактерий — длинных нитевидных жгутов, которые прикрепляются одним концом к стенке кишечника. Пересадка микробиоты от других лабораторных мышей дефектным мышам сразу же привела к резкому увеличению количества клеток Th17. Содержание этих мышей вместе с остальными мышами также повлекло за собой аналогичный эффект.

В то время как на бактерии B. fragilis Мазманяна, по всей вероятности, была возложена задача усиления регуляторной ветви иммунной системы, сегментированные нитчатые бактерии способствовали увеличению количества атакующих клеток. В контексте аутоиммунных заболеваний избыток клеток, усиливающих воспаление, может показаться проблемой. Однако в реальном мире, в котором существует множество условно-патогенных микроорганизмов, неизменно стремящихся воровать и грабить, воспалительный потенциал — это необходимость.

В действительности, когда Литтмен и Иванов ввели мышиный патоген Citrobacter rodentum, мыши-носители этих бактерий (мыши с большим количеством клеток Th17) более эффективно противостояли инвазии. Вы когда-нибудь задумывались о том, почему обитатели трущоб питаются чем попало и не болеют? Вот ответ: возможно, в них обитают бактерии, благодаря которым их иммунная система способна более эффективно отражать вторжение.

А как насчет иммунной системы, которая склонна атаковать саму себя? Гарвардский ученый Диана Мэтис, изучавшая ревматоидный артрит (тяжелое дегенеративное воспалительное аутоиммунное заболевание суставов), обнаружила, что сегментированные нитчатые бактерии могут его провоцировать[366]. В среде, очищенной от микробов, мыши с искусственно вызванной предрасположенностью к развитию артрита в большинстве случаев оставались здоровыми. Однако, как только Мэтис вводила мышам именно эту бактерию, их иммунная система начинала атаковать суставные хрящи. В ходе другого исследования Саркис Мазманян продемонстрировал, что эта бактерия может также способствовать развитию рассеянного склероза у мышей, подверженных этому заболеванию[367].

Безусловно, все эти модели носили в высшей степени искусственный характер. Кроме того, сегментированные нитчатые бактерии в большинстве случаев не были коренными обитателями кишечника человека. Тем не менее эти эксперименты раскрыли удивительный аспект взаимоотношений между резидентными микробами и хозяином в лице млекопитающего. Каждый вид бактерий может индуцировать формирование идентичной популяции иммунных клеток в организме хозяина. От этих клеток зависит возможность развития аутоиммунных заболеваний в местах, удаленных от кишечника, таких как суставы и центральная нервная система.

Безусловно, реальная микробная экосистема намного сложнее экосистем, воссозданных в лабораторных условиях. Однако в целом результаты этих исследований свидетельствуют о том, что иммуноопосредованные заболевания могут быть обусловлены дисбалансом между, скажем, B. fragilis и человеческой версией подстрекающих к беспорядкам сегментированных нитчатых бактерий. Возможно, здоровье зависит от правильного соотношения различных микробов.

Что касается вопроса о равновесии между провоспалительными и противовоспалительными тенденциями, здесь также намечался прорыв.

Что обеспечивает поддержание мира в организме человека?

На протяжении десятков лет ученые искали инфекционные причины воспалительных заболеваний кишечника. Их внимание по-прежнему было обращено на родственника туберкулезной палочки Mycobacterium avium paratuberculosis. А «липучие» штаммы кишечной палочки Escherichia coli, которые как будто приклеиваются к слизистой оболочке кишечника, также вызывали подозрения.

Однако, когда Дэниел Фрэнк и Норман Пейс из Колорадского университета в Боулдере проанализировали результаты биопсии пациентов, страдающих болезнью Крона, их поразило не присутствие этих обычных подозреваемых, а отсутствие двух типов бактерий[368]. В пораженных этой болезнью кишечниках оказалось в сотни раз меньше бактерий типа Bacteroidetes и клостридий определенных видов, обычно обитающих в кишечнике человека.

Истощение запаса этих бактерий было настолько поразительным, что Александр Свидзинский из клиники Шарите в Берлине предложил использовать их отсутствие в качестве быстрого способа диагностики активной стадии болезни Крона[369]. Он утверждал, что, сделав анализ «цилиндрического столбика фекалий», удерживаемого в парафине (подобно осадочным кернам, которые климатологи извлекают со дна озер, но в данном случае образец добывается из экскрементов), можно точно диагностировать воспалительные заболевания кишечника. Отсутствие этих бактерий в «фекально-слизистой» переходной зоне неизбежно свидетельствует о наличии воспаления.

Французские ученые сосредоточили внимание на одном виде бактерий с длинным названием Faecalibacterium prausnitzii[370]. Они обнаружили, что риск возврата болезни Крона у пациентов, которым сделали хирургическую операцию, находится в обратной зависимости от количества этих бактерий. Если у вас их много, ваш прогноз лучше, чем если бы их было мало. Между тем шведские ученые смогли определить, у кого из однояйцевых близнецов выше вероятность развития болезни Крона, просто оценив, у кого из них меньше бактерий F. prausnitzii[371].

Все эти случаи корреляции были вполне убедительными, однако они не показывали причинно-следственных связей. Честь доказать, что эти бактерии играют активную роль в поддержании мира, выпала на долю ученых из Токийского университета Кодзи Атараси и Кеньи Хонда. Эти ученые применили подход «сверху вниз» и постепенно уничтожали микробиоту мыши посредством антибиотиков узкого спектра действия, ожидая момента, когда популяция регуляторных Т-клеток хозяина разрушится[372]. Курс ванкомицина, предназначенный для борьбы с грамположительными бактериями, оказался тем самым переломным моментом, когда клетки-миротворцы мыши вышли из строя. Ученые сосредоточились на тех видах клостридий, численность которых уменьшалась в случае болезни Крона — к их числу относилась и F. prausnitzii. Теперь они пытались заселять организм определенными бактериями до момента восстановления регуляторных Т-клеток.

Ученые разработали смесь из 46 штаммов клостридий и ввели их мышам. Количество регуляторных Т-клеток увеличилось. Мыши регулярно поедали экскременты друг друга, а когда исследователи поместили в одну среду обитания мышей, которые не получили этих бактерий, и мышей, которым их ввели, у мышей первой группы также произошло увеличение популяции регуляторных Т-клеток. Иммуномодуляция оказалась заразной.