[94]. Иногда может иметь место и другой сценарий. Индивидуумы, являющиеся по фенотипу мальчиками, приобретают типично женский кариотип 46, XX. В таких случаях крошечный участок хромосомы Y, содержащий ген SRY, часто переносится на другую хромосому во время формирования сперматозоидов у отца. Этого оказывается достаточно, чтобы инициировать маскулинизацию плода[95]. Перенесенный участок хромосомы Y слишком мал, чтобы быть обнаруженным в процессе создания кариотипа.
Совершенно иначе обстоит дело с хромосомой X. Она чрезвычайно велика и несет около 1300 генов. Огромное количество из числа этих генов ответственно за работу мозга. Многие другие требуются на различных стадиях формирования яичников или яичек, а также для прочих аспектов, определяющих способность к воспроизведению, как у мужчин, так и у женщин[96].
Итак, на хромосоме X около 1300 генов. Это порождает любопытную проблему. У женщин две хромосомы X, а у мужчин только одна. Это значит, что у женщин по две копии этих 1300 генов на хромосоме X, а у мужчин только по одной. На основании этого мы можем выдвинуть предположение, что женские клетки должны вырабатывать вдвое больше белков, регулируемых этими генами (относятся к так называемым Х-генам), чем мужские клетки.
Однако имеющиеся у нас сведения о таких нарушениях как синдром Дауна заставляют усомниться в справедливости нашей гипотезы. Обладание тремя копиями хромосомы 21 (вместо обычных двух) приводит к синдрому Дауна, и именно это отклонение является главным нарушением у людей, родившихся с таким заболеванием. Трисомии большинства других хромосом вызывают настолько тяжелые последствия, что дети с такой патологией никогда не рождаются, так как эмбрионы просто нежизнеспособны (т. е. погибают внутриутробно. Прим. ред). Например, ни разу не был рожден ребенок, который бы имел в своих клетках три копии хромосомы 1. Если 50-процентное увеличение экспрессии генов какой-либо аутосомы способно вызывать настолько тяжелые проблемы в состояниях трисомии, то, как мы объясним сценарий с хромосомой X? Как могут женщины выживать, если у них вдвое больше принадлежащих хромосоме X генов, чем у мужчин? Или, если перефразировать вопрос, как могут жить мужчины, когда у них вдвое меньше генов хромосомы X, чем у женщин?
Ответ на оба эти вопроса заключается в том, что экспрессия локализованных на хромосоме X генов в действительности абсолютно одинаковая как у мужчин, так и у женщин, несмотря на разное количество хромосом, и феномен этот называется компенсацией доз. Система определения половой принадлежности XY отсутствует у животных других классов, так что компенсация доз хромосомы X присуща исключительно плацентарным млекопитающим.
В начале 1960-х годов британская генетик Мэри Лайон выдвинула гипотезу о том, как должна происходить компенсация доз хромосомы X. Ее предположения сводились к следующему:
1) клетки здоровой женщины содержат только одну активную хромосому X;
2) репрессия хромосомы X происходит на ранних этапах развития;
3) репрессированная хромосома X может быть получена или от матери, или от отца, причем репрессия происходит случайным образом в какой-либо одной клетке;
4) репрессия хромосомы X будет необратимой в соматической клетке и во всех ее производных.
Ее предсказания оказались удивительно точными[97][98]. Настолько точными, что во многих учебниках репрессия хромосомы X называется лайонизацией. Давайте и мы рассмотрим ее «пророчества» по очереди:
1) отдельные клетки здоровой женщины действительно экспрессируют гены только с одной копии хромосомы X — другая копия, по сути, подавлена;
2) репрессия хромосомы X происходит на ранних этапах развития, на той его стадии, когда плюрипотентные клетки эмбриональной внутриклеточной массы начинают дифференцироваться, выбирая собственные пути специализации (около вершины уоддингтоновского эпигенетического ландшафта);
3) в среднем, у 50 процентах клеток у женщин полученная по материнской линии хромосома X не задействована. У остальных 50 процентов клеток эта хромосома, унаследованная от отца, репрессируется;
4) так как клетка подавляет одну из пары хромосому X, именно эта копия хромосомы X остается репрессированной во всех дочерних клетках на протяжении всей жизни женщины, даже если ей предстоит прожить более ста лет.
Хромосома Х репрессируется не мутацией; последовательность ДНК в ней остается совершенно неизменной. Репрессия хромосомы X является типичным эпигенетическим феноменом.
Тема репрессии хромосомы X оказалась удивительно плодородным полем для исследований. У некоторых механизмов, принимающих в ней участие, обнаружились параллели в ряде других эпигенетических и внутриклеточных процессов. Репрессия хромосомы X имеет важные последствия для возникновения у человека определенных заболеваний и для проблем терапевтического клонирования. И даже сегодня, через 50 лет после революционной работы Мэри Лайон, мы все еще далеко не до конца представляем себе, как именно происходит репрессия хромосомы X.
Чем больше мы вникаем в этот процесс, тем более удивительным он нам представляется. Для начала, репрессия возможна лишь только у хромосомы X, но ни у одной из аутосом, а это значит, что клетка должна обладать каким-то способом отличать хромосомы X от аутосом. Более того, репрессия хромосомы X затрагивает не один или несколько генов, как это происходит при импринтинге. Нет, при репрессии хромосомы X более 1000 генов подавляются на десятилетия.
Представьте себе автомобильный концерн, один завод которого расположен в Японии, а другой находится в Германии. Эквивалентом импринтинга можно считать незначительные изменения в спецификациях для разных рынков. На заводе в Германии могут запустить линию, на которой на рулевом колесе устанавливается датчик обогревателя, а не кондиционера. Японии сделают все наоборот. Репрессию хромосомы X в этом случае можно приравнять к полному закрытию и консервации одного из заводов, который никогда не возобновит свою деятельность, если только компанию не приобретет другой собственник.
Еще одно существенное отличие репрессии хромосомы X от импринтинга заключается в том, что в импринтинге хромосомы X отсутствует эффект исходного родителя. Для соматических клеток не имеет никакого значения, от кого из родителей была унаследована хромосома X. Любая из них имеет 50-процентный шанс подвергнуться репрессии. Причина, по которой это происходит, имеет совершенно обоснованное эволюцией объяснение.
Импринтинг отвечает за уравновешивание конкурирующих потребностей материнского и отцовского геномов, особенно в процессе развития. Механизмы импринтинга, сформировавшиеся в ходе эволюции, конкретно нацелены на отдельные гены или маленькие пучки генов, оказывающих влияние на рост плода. И, в конце концов, в геноме млекопитающих всего лишь от 50 до 100 импринтинговых генов.
Однако репрессия хромосомы X действует куда в более глобальных масштабах. Это механизм подавления касается свыше 1000 генов, всех вместе и навсегда. Тысяча генов — это весьма много, это около 5 процентов от общего числа кодирующих белки генов, поэтому всегда существует вероятность, что какой-либо отдельный ген хромосомы X может мутировать. На рисунке 9.2 представлено сравнение результатов импринтинговой репрессии хромосомы X (слева) и случайной репрессии хромосомы X (справа). Для упрощения, на диаграмме показана только мутация унаследованного по отцовской линии гена при импринтинговой репрессии полученной по материнской линии хромосомы X.
Рис. 9.2. Каждый кружок представляет женскую клетку, содержащую две хромосомы X. Хромосома X, унаследованная от матери, обозначена женским символом. Хромосома X, унаследованная от отца, обозначена мужским символом и содержит некую мутацию, отмеченную белой выемкой. На левой стороне диаграммы показано, что импринтинговая репрессия полученной по материнской линии хромосомы X приведет к тому, что все клетки организма будут экспрессировать только хромосому X, несущую мутацию, которая была унаследована от отца. С правой стороны хромосомы X инактивируются случайно, независимо от своего исходного родителя. В результате, в среднем, половина соматических клеток будет экспрессировать нормальную версию хромосомы X. По этой причине случайная репрессия хромосомы X является менее рискованным эволюционным сценарием, нежели импринтинговая репрессия хромосомы X
С помощью случайной репрессии хромосомы X клетки способны минимизировать последствия мутаций в генах, локализованных в хромосоме X.
Важно помнить, что «спящая» хромосома X действительно является репрессированной. Почти все ее гены постоянно подавлены, и эта репрессия в обычных условиях не может быть нарушена. Когда мы говорим об активной хромосоме X, мы всегда несколько преувеличиваем. Мы не имеем в виду, что каждый ген активной хромосомы X активен постоянно в каждой клетке. Правильнее было бы говорить, что гены обладают потенциалом стать активными. Они подвержены любым обычным эпигенетическим модификациям и системам контроля экспрессии гена, реагирующим на требования процесса развития и сигналы окружающей среды.
Одно из любопытных следствий репрессии хромосомы X заключается в том, что (эпигенетически) женщины сложнее мужчин. В клетках мужчин содержится лишь по одной хромосоме X, и поэтому репрессии хромосомы X у них не происходит. А вот у женщин хромосома X случайно репрессируется во всех клетках. Следовательно, на самом фундаментальном уровне все клетки женского организма могут быть разделены на два лагеря в зависимости от того, какую хромосому X они подавляют. Образно говоря, в этом плане женщины представляют собой эпигенетическую мозаику.