. Кроме того, ген TARBP2 оказывается мутировавшим при некоторых видах рака, передаваемых по наследству[166]. Белок TARBP2 важен для нормального функционирования миРНК. Это еще больше убеждает нас в той решающей роли, которую играют миРНК в возникновении и развитии у человека определенных видов рака.
Учитывая постоянно увеличивающееся количество свидетельств о ведущей роли миРНК в развитии рака, не приходится удивляться тому, что ученые начали исследовать возможности использования этих молекул для лечения рака. Идея заключалась в том, чтобы восполнить отсутствующие миРНК или подавить те, которые экспрессируются слишком бурно. Существовала надежда, что этого можно достичь, вводя больным раком дополнительные миРНК или их искусственные заменители. Эта методика также могла найти применение и в лечении других заболеваний, при которых экспрессия миРНК становится аномальной.
Крупные фармацевтические компании вкладывают значительные средства в эти исследования. Корпорации «Санофи-Авентис» и «ГлаксоСмитКляйн» заключили многомиллионные контракты на научные разработки с компанией «Регулус Терапевтике» из Сан-Диего. Они активно изучают возможности использования заменителей или подавителей миРНК для лечения самых разнообразных заболеваний — от рака и до аутоиммунных нарушений.
Существуют молекулы очень похожие на миРНК, которые называются малыми интерферирующими РНК (siRNA — small interfering RNA). Они пользуются во многом теми же самыми процессами, что и миРНК, для подавления экспрессии генов, особенно при разрушении мРНК. Малые интерферирующие РНК оказались очень удобным инструментом для проведения исследований, поскольку их легко можно ввести в клетки в культуре для репрессии какого-либо гена в экспериментальных целях. В 2006 году ученые, ставшими первооткрывателями этой технологии, Эндрю Файер и Крейг Мелло, были удостоены Нобелевской премии по физиологии и медицине.
Фармацевтические компании проявляли большой интерес к использованию малых интерферирующих РНК в качестве потенциальных лекарственных средств. Теоретически молекулы малых интерферирующих РНК могут применяться для подавления экспрессии любого белка, провоцирующего развитие того или иного заболевания. В тот же год, когда Файер и Мелло получили Нобелевскую премию, гигантский фармацевтический концерн «Мерк» заплатил свыше одного миллиарда долларов США за калифорнийскую компанию «Сирна Терапевтикс», занимающуюся исследованиями малых интерферирующих РНК. Другие крупные фармацевтические корпорации делали не менее существенные инвестиции в научные работы.
Но в 2010 году фармацевтическая промышленность стала проявлять первые признаки разочарования, и ее интерес к научным разработкам начал угасать. Крупнейший швейцарский фармацевтический концерн «Рош» объявил о замораживании программ исследования малых интерферирующих РНК, несмотря на то, что за три с лишним года в них было вложено свыше 500 миллионов долларов. Другая швейцарская корпорация, «Новартис», прекратила сотрудничество с компанией «Алнилам» из Массачусетса, занимающейся исследованиями малых интерферирующих РНК. Есть, правда, и много других компаний, по-прежнему остающихся в игре, но справедливости ради стоит заметить, что перспективы этой технологии сегодня представляются менее обещающими, чем еще несколько лет назад.
Одна из самых главных проблем, связанных с терапевтическим применением малых интерферирующих РНК, объясняется довольно просто. Нуклеиновые кислоты, такие как ДНК и РНК, очень сложно превратить в эффективные препараты. Большинство прекрасно зарекомендовавших себя лекарственных средств — ибупрофен, виагра, антигистамины — имеют некоторые общие характеристики, проглатывают, они проникают через стенки кишечника, распространяются по организму, не слишком быстро разрушаются печенью, захватываются клетками и оказывают свое воздействие на молекулы в клетках или на них. На первый взгляд все это выглядит довольно просто, но простота эта кажущаяся и требующая огромных капиталовложений при разработке новых лекарств. Компании затрачивают, по меньшей мере, десятки миллионов долларов для достижения такой простоты применения и эффективности лекарств, но, как это ни удивительно, и сегодня мы продолжаем пользоваться преимущественно методом проб и ошибок.
Эта проблема становится еще более серьезной при попытках создать лекарственные средства на основе нуклеиновых кислот. Отчасти она обусловлена их размерами. Молекула малой интерферирующей РНК в среднем более чем в 50 раз больше таблетки ибупрофена. При создании лекарств (особенно принимаемых орально, а не вводимых с помощью инъекций) действует общее правило — чем меньше, тем лучше. Чем больше лекарственная форма, тем сложнее доставить в организм пациента достаточно эффективные дозы препарата, которые бы сохраняли свои свойства там достаточно продолжительный срок. Возможно, в том числе и по этой причине в компании «Рош» пришли к мнению, что деньги можно более эффективно потратить где-нибудь в другом месте. Это не значит, что малые интерферирующие РНК никогда не будут применяться для лечения заболеваний; это означает только то, что инвестиции в них — слишком рискованное для бизнеса предприятие. С миРНК проблемы, по сути, те же самые, поскольку все нуклеиновые кислоты очень похожи друг на друга.
К счастью, и из тупика иногда можно найти выход, и в следующей главе мы узнаем, как лекарственные средства, воздействующие на эпигенетические ферменты, уже успешно применяются при лечении сложных разновидностей рака.
Глава 11. Война с внутренним врагом
Самая волнующая фраза, какую можно услышать в науке, — фраза, возвещающая о новых открытиях, — вовсе не «Эврика!», а «Вот забавно…».
В науке существует множество примеров того, как случайное, казалось бы, событие приводило к великим открытиям. Наверное, наиболее известным среди этих примеров является история о том, как Александр Флеминг обнаружил, что плесенный грибок, случайно оказавшийся в экспериментальной чашке Петри, убил культивируемые там бактерий. Это и стало тем случайным событием, которое привело к открытию пенициллина и последующему появлению антибиотиков. В результате этого выдающегося, но сделанного совершенно случайно открытия, были спасены жизней миллионов людей.
В 1945 году Александр Флеминг был удостоен Нобелевской премии в области медицины вместе с Эрнстом Чейном и Говардом Флори, разработавшими способы промышленного получения пенициллина, что сделало возможным использовать антибиотик в терапевтических целях. Знаменитое высказывание Айзека Азимова, вынесенное в эпиграф настоящей главы, подсказывает нам, что Александр Флеминг был не просто счастливчиком, которому улыбнулась неожиданная удача. Его прозрение не было чистым везением. Очень маловероятным представляется то, что Флеминг был первым ученым, культуры бактерий которого оказались инфицированными плесенным грибком. Его открытие стало результатом понимания, что происходит нечто необычное, и осознания значимости этого явления. Благодаря своим знаниям и профессиональной подготовке Флеминг смог из случайного события сделать далеко идущие выводы. Он видел то, что, возможно, видели до него многие другие исследователи, но его мышление было совершенно другим.
Даже если мы согласимся с тем, что случайные события играют заметную роль в научных исследованиях, мы все же почувствуем себя увереннее, если будем считать, что наука обычно развивается по логическому и упорядоченному пути. Вот одна из тропинок, следуя которой, мы могли бы представить себе такой прогресс в эпигенетике…
Эпигенетические модификации контролируют судьбу клетки — это те самые процессы, благодаря которым клетки печени, например, остаются клетками печени, а не превращаются в другие типы клеток. Рак представляет собой резкий сбой в нормальном контролировании судьбы клетки, в результате которого клетки печени перестают быть самими собой и превращаются в раковые клетки, из чего следует, что при раке эпигенетическая регуляция становится аномальной. Следовательно, мы должны направить свои усилия на разработку препаратов, которые бы препятствовали нарушению эпигенетической регуляции. Такие лекарственные препараты оказались бы чрезвычайно полезны для лечения и профилактики рака.
Процесс этот требует тщательных разработок и больших затрат. Действительно, фармацевтические компании по всему миру на разработки эпигенетических лекарственных средств, способных помочь выполнению этой задачи затрачивают сотни миллионов долларов. Однако этот процесс представляется простым и понятным лишь в теории, тогда как на практике поиски лекарства от рака выглядят совсем иначе.
Уже существуют лицензированные препараты для лечения рака, принцип действия которых основан на подавлении эпигенетических ферментов. Эти соединения проявили себя как средства против раковых клеток прежде, чем их стали применять для подавления эпигенетических ферментов. В действительности, именно эффективность этих соединений пробудила интерес к эпигенетической терапии, как и ко всей эпигенетике в целом, хотя путь к успеху не был усыпан розами.
Когда-то давным-давно, в самом начале 1970-х, молодой южноафриканский ученый по имени Питер Джонс работал с химическим соединением под названием 5-азацитидин. Это соединение, о чем на тот момент уже было известно, обладало противораковым действием, поскольку было способно остановить деление раковых клеток при лейкемии, и демонстрировало обнадеживающие результаты при испытании его на больных лейкемией детях[167].
Сегодня Питер Джонс является признанным во всем мире первооткрывателем эпигенетических методик лечения рака. Высокий, худощавый, загорелый, с густым ежиком седых волос он, как магнит, притягивает к себе внимание участников крупных конферен