Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности — страница 46 из 68

Итак, 5-азацитидин является примером того, как противораковый агент неожиданно проявил свои эпигенетические свойства. Как это ни странно, но довольно похожая история произошла и с другим соединением, которое теперь уже стало лицензированным средством лечения рака[175].

Еще одна счастливая случайность

В 1971 году Шарлотта Френд продемонстрировала, что очень простое химическое соединение под названием ДМСО (полностью его имя звучит как диметилсульфоксид) оказывает неожиданно странное воздействие на раковые клетки мышей, больных лейкемией. Когда эти клетки обрабатывались ДМСО, они становились красными. Происходило это по той причине, что они активировали ген гемоглобина, пигмента, благодаря которому эритроциты имеют красный цвет[176]. Пораженные лейкемией клетки обычно никогда не активируют этот ген, и механизм этого явления был совершенно неизвестен.

Рональд Бреслоу из Колумбийского университета, а также Пол Маркс и Ричард Рифкинд из Мемориального ракового центра Слоуна-Кеттеринга, были весьма заинтригованы исследованиями Шарлотты Френд. Рональд Бреслоу тут же приступил к разработкам и созданию новых химических соединений, используя в качестве отправной точки строение ДМСО и кое-что добавляя или меняя в нем, как это делается при создании новых конструкций из деталей Лего. Пол Маркс и Ричард Рифкинд начали тестировать эти соединения на различных клеточных моделях. Некоторые из соединений оказывали на клетки иное, нежели ДМСО, воздействие. Они останавливали рост клеток.

После многочисленных экспериментов, дававших важную информацию о новых и все более усложнявшихся соединениях, ученые создали молекулу, получившую название САГК (субероиланилид гидроксамовая кислота). Это химическое соединение оказалось чрезвычайно эффективным препаратом для подавления роста и/или инициирования гибели клеток в популяции раковых клеток[177]. Однако ученым потребовалось еще целых два года, чтобы определить, что именно САГК делает в клетках. Ключевой момент в изысканиях произошел более чем через 25 лет после появления публикации Шарлотты Френд, когда Виктория Ричон из команды Пола Маркса прочла доклад группы исследователей из Токийского университета, датированный еще 1990 годом.

Японские ученые работали с соединением, которое называется Трихостатин А или ТСА. Как на тот момент уже было известно, ТСА препятствовал размножению клеток. Японские исследователи показали, что применение ТСА меняло пределы, в которых гистоновые белки присоединяли к себе ацетиловую химическую группу в популяции раковых клеток. Гистоновое ацетилирование — это одна из эпигенетических модификаций, с которой мы уже встречались в главе 4. Когда клетки обрабатывались ТСА, уровни гистонового ацетилирования повышались. Происходило это не потому, что это химическое соединение активировало ферменты, которые накладывают ацетиловые группы на гистоны. Причина была в том, что ТСА подавлял ферменты, удалявшие ацетиловые группы с этих хроматиновых белков. Эти белки называются гистондезацетилазами или, для краткости, ГДАЦ[178].

Виктория Ричон сравнила строение ТСА со строением САГК, которые показаны на рисунке 11.2.

Рис. 11.2. Строения ТСА и САГК. в которых схожие участки заключены в кружки. С — углерод; Н — водород; N — азот; О — кислород.Для упрощения схемы некоторые атомы углерода намеренно не показаны, однако они присутствуют там, где соединение изображено двойной чертой


Не нужно обладать ученой степенью по химии, чтобы заметить, что ТСА и САГК выглядят удивительно похоже, особенно участками, которые находятся справа в цепи. Виктория Ричон предположила, что, подобно ТСА, САГК также подавляет ГДАЦ. В 1998 году она вместе с коллегами опубликовала доклад, в котором подтвердила, что все именно так и обстоит[179]. САГК не дает ферментам ГДАЦ удалять ацетиловые группы с гистоновых белков, и в результате этого на гистонах оказывается много ацетиловых групп.

За пределами совпадений

Итак, 5-азацитидин и САГК оба подавляют разрастание раковых клеток и оба понижают активность эпигенетических ферментов. Казалось бы, мы имеем все основания считать, что это свидетельствует в пользу теории о том, что эпигенетические белки важны при развитии рака, но, возможно, мы делаем слишком поспешные выводы? Может быть, всего лишь случайным совпадением является то, что оба эти препарата воздействуют на эпигенетические белки? В конце концов, ферменты, которые являются мишенями для этих двух химических соединений, совершенно различны. 5-азацитидин подавляет ферменты ДНМТ, которые добавляют метиловые группы к ДНК. САГК, в свою очередь, подавляет семейство ферментов ГДАЦ, которые удаляют ацетиловые группы с гистоновых белков. На первый взгляд эти два процесса выглядят абсолютно разными. Может быть, не более чем совпадение то, что и 5-азацитидин, и САГК подавляют эпигенетические ферменты?

Эпигенетики считают, что о совпадении здесь не может быть и речи. Ферменты метилтрансферазы ДНК добавляют метиловую группу к цитидиновому основанию. Высокие концентрации этого основания присутствуют в длинных, насыщенных ЦГ цепочках ДНК, известных как островки CpG. Эти островки находятся выше генов, в областях промоторов, контролирующих экспрессию генов. Когда ДНК островка CpG оказывается сильно метилированной, ген, контролируемый этим промотором, подавляется. Другими словами, метилирование ДНК является репрессивной модификацией. Активность ДНМТ повышает метилирование ДНК и, соответственно, понижает экспрессию генов. Подавляя эти ферменты 5-азацитидином, мы можем повысить экспрессию гена.

Гистоновые белки также присутствуют в промоторах генов. Гистоновые модификации могут быть очень сложными, в чем мы уже убедились в главе 4. Но гистоновое ацетилирование является наиболее радикальным из них, если говорить о его воздействии на экспрессию генов. Если гистоны, находящиеся над геном, сильно ацетилированы, то этот ген будет активно экспрессироваться. Если гистоны недостаточно ацетилированы, то ген будет отключен. Гистоновое дезацетилирование является репрессивным изменением. Гистоновые дезацетилазы (ГДАЦ) удаляют ацетиловые группы с гистоновых белков и тем самым понижают экспрессию генов. Подавляя эти ферменты с помощью САГК, мы также можем усилить экспрессию генов.

Так что в обоих случаях действует один и тот же принцип. Оба наши ничем не связанные между собой химические соединения, контролирующие рост раковых клеток в культуре и теперь уже являющиеся лицензированными препаратами для лечения рака у человека, подавляют эпигенетические ферменты. Поскольку они повышают экспрессию генов, то возникает очередной вопрос: почему это так важно для лечения рака? Чтобы разобраться в этом, нам придется совершить небольшой экскурс в биологию рака.

Начальный курс биологии рака

Рак является результатом аномального и неконтролируемого разрастания клеток. Обычно клетки нашего организма делятся и размножаются в строго выверенном темпе. Этот процесс контролируется сложным уравновешивающим взаимодействием различных групп генов в наших клетках. Определенные гены способствуют разрастанию клетки. Иногда они называются протоонкогенами. Эти гены были обозначены значком «плюс» на диаграмме в предыдущей главе. Другие гены сдерживают клетку, препятствуя ее слишком активному разрастанию. Эти гены называются супрессорами новообразований. На той же диаграмме они были представлены знаком «минус».

Протоонкогены и супрессоры новообразований сами по себе не хорошие и не плохие. В здоровых клетках активность генов этих двух классов уравновешивает друг друга. Но когда в регуляции этого взаимодействия возникают какие-то неполадки, механизм пролиферации (то есть разрастания) клетки тоже может давать сбои.

Если протоонкогены становятся слишком активными, они могут подтолкнуть клетку к раковому состоянию. С другой стороны, если супрессоры новообразований оказываются репрессированными, они не могут больше препятствовать делению клетки. В обоих случаях результат одинаков — клетка может начать пролиферировать слишком быстро.

Однако рак не является всего лишь следствием излишне активной пролиферации клеток. Если клетки делятся слишком быстро, но по всем прочим параметрам остаются нормальными, то они образуют структуры, которые называются доброкачественными опухолями. Они могут быть неприглядными, они могут доставлять неудобства, но если они не давят на жизненно важный орган и не препятствуют его деятельности, то сами по себе практически не являются смертельно опасными. При полностью развившемся раке клетки не просто делятся слишком быстро, а сами становятся аномальными и начинают вторгаться в другие ткани.

Примером доброкачественных опухолей может служить родинка. К ним также относятся и небольшие наросты на внутренней поверхности толстой кишки, которые называются полипами. Ни родинки, ни полипы как таковые опасности не представляют. Проблема в том, что чем больше у человека родинок или полипов, тем выше вероятность того, что одно из этих образований сделает следующий шаг и разовьется в аномалию, которая подтолкнет его еще дальше по пути к возникновению полномасштабного рака.

Под этим подразумевается некий важный вывод, который неоднократно был подтвержден многими экспериментами. Рак — не одномоментное явление. Это многоступенчатый процесс, при котором каждый новый этап ведет клетку все дальше по пути превращения ее в злокачественную. Это утверждение справедливо даже в тех случаях, когда человек наследует очень сильную предрасположенность к раку. Примером этого может быть предклимактерический рак груди, передающийся в некоторых семьях от поколения к поколению. Женщины, унаследовавшие мутировавшую копию гена под названием