лекарства от рака. Нужно сказать, что вообще ученые стремятся избегать категоричности в суждениях, однако если большинство из них и придерживается в чем-то единого мнения, так это в том, что какого-либо универсального лекарства от рака не будет создано никогда.
Дело в том, что рак многообразен. Существуют, возможно, свыше сотни разных заболеваний с этим названием. Если мы возьмем всего лишь один пример — скажем, рак груди, — то обнаружим, что только это конкретное заболевание насчитывает множество разновидностей. Одни из них развиваются в результате реакции на женский гормон эстроген. Другие наиболее резко реагируют на белок под названием эпидермальный фактор роста. Ген BRCA1 в одних случаях рака груди репрессируется или мутирует, а в других — нет. Некоторые виды рака груди не реагируют ни на какие известные нам факторы роста рака, но могут оказаться восприимчивы к другим сигналам, которые мы пока не способны идентифицировать.
Поскольку рак представляет собой многоступенчатый процесс, два пациента, симптомы болезни которых выглядят очень схожими, могут страдать от совершенно различных молекулярных процессов. Их заболевания могут быть следствием разных сочетаний мутаций, эпигенетических модификаций и других факторов, инициирующих рост и развитие опухолей. А это значит, что разным пациентам требуются разные виды и комбинации противораковых препаратов.
Однако даже с учетом этого результаты клинических испытаний ингибиторов ДНМТ и ГДАЦ оказались весьма удивительными. Ни один из них не проявил себя эффективно при массивных новообразованиях, к которым относятся рак груди, толстой кишки или простаты. Однако они оказались наиболее действенны при борьбе с видами рака, развивающимися из клеток, вырабатывающих лейкоциты, циркуляция которых по организму является частью нашей системы защиты от болезнетворных микроорганизмов. Такие разновидности рака называются гематологическими опухолями. Пока не ясно, почему существующие эпигенетические препараты оказываются неэффективными для противоборства с массивными новообразованиями. Возможно, причина этого в том, что в этих видах рака действуют иные молекулярные механизмы, отличные от механизмов гематологических опухолей. С другой стороны, существует вероятность и того, что лекарственные препараты не могут проникать в массивные новообразования в достаточно высокой концентрации, чтобы воздействовать на большую часть раковых клеток.
Но даже и при гематологических опухолях существует заметная разница в воздействии ингибиторных препаратов ДНМТ и ГДАЦ. Оба ингибитора ДНМТ были официально допущены к применению против заболевания, известного как миелодиспластический синдром[186][187]. Это аномалия в развитии спинного мозга.
Оба ингибитора ГДАЦ получили лицензии на использование их для лечения другого вида гематологических опухолей, который называется кожная Т-клеточная лимфома[188]. При этом заболевании кожа становится насыщенной пролиферирующими иммунологическими клетками, называемыми Т-клетками, образующими видимые бляшки и обширные поражения кожного покрова.
Далеко не на каждого пациента, страдающего миелодиспластическим синдромом или кожной Т-клеточной лимфомой, эти препараты оказывают одинаково эффективное воздействие. И даже у тех пациентов, которые демонстрируют реакцию на эти средства, ни одно из них не излечивает заболевание полностью. Если пациенты перестают принимать лекарства, болезнь возвращается. Создается впечатление, что ингибиторы ДНМТ1 и ГДАЦ всего лишь сдерживают рост раковых клеток, замедляя и подавляя его. Они скорее ослабляют развитие болезни, нежели избавляют от нее.
Однако даже такие результаты часто приносит пациентам существенное облегчение, возрождая в них надежду на долголетие и/ или повышая качество жизни. Например, многие больные кожной Т-клеточной лимфомой испытывают постоянные боли и страдания из-за непрекращающегося и мучительного зуда в пораженных участках. Ингибиторы ГДАЦ зарекомендовали себя как весьма эффективное средство для смягчения этих симптомов даже у тех пациентов, на продолжительность жизни которых они не оказали какого-либо заметного влияния.
Нужно признаться, что часто бывает очень сложно прогнозировать, каким больным принесет пользу то или иное новое противораковое средство. И это является одной из самых серьезных проблем, стоящих перед фармацевтическими компаниями, разрабатывающими новые эпигенетические способы лечения рака. Даже сегодня, через несколько лет после выдачи Управлением по контролю за продуктами и лекарствами первых лицензий 5-азацитидину и САГК, нам по-прежнему неизвестно, почему эти препараты оказываются намного более эффективными при борьбе с миелодиспластическим синдромом и кожной Т-клеточной лимфомой, чем с другими видами рака. Просто так случилось, что при первых клинических испытаниях на человеке пациенты, страдавшие именно этими заболеваниями, более активно реагировали на эти лекарственные препараты, чем больные другими видами рака. Как только проводящие испытания исследователи обратили на это внимание, они стали планировать последующие испытания таким образом, чтобы они были в первую очередь ориентированы на представителей этих групп.
На первый взгляд, тут нет никакой серьезной проблемы. Казалось бы, фармацевтические компании могут продолжать разрабатывать разнообразные лекарства, а затем, тестируя их на пациентах, страдающих разными видами рака, и используя во всевозможных комбинациях с другими противораковыми препаратами, на практике определять, как можно использовать их наилучшим образом.
Главное препятствие такому развитию событий состоит в высокой стоимости затрат. Если мы зайдем на сайт Национального института раковых заболеваний, то сможем узнать о количестве испытаний, которые проходит тот или иной препарат в настоящий момент. В феврале 2011 года, например, проводилось 88 тестирований САГК[189]. Сложно дать точную оценку стоимости клинических испытаний, однако, основываясь на данных 2007 года, можно говорить, что, по самым скромным подсчетам, она составляет 20 тысяч долларов на каждого пациента[190]. Учитывая, что в каждом испытании участвуют двадцать пациентов, мы можем сделать вывод, что только клинические испытания САГК обходятся Национальному институту раковых заболеваний в сумму свыше 35 миллионов долларов. И это наверняка нижняя граница возможных расходов.
Исследователи из Колумбийского университета и Ракового центра Слоуна-Кеттеринга, первыми разработавшие САГК, тут же получили патент на свое открытие. Затем они заключили договор с компанией под названием «Атон Фарма» на создание из САГК лекарственного препарата. В 2004 году, когда это средство продемонстрировало первые обнадеживающие результаты в лечении кожной Т-клеточной лимфомы, «Атон Фарма» была приобретена гигантским фармацевтическим концерном «Мерк» за сумму, превышающую 120 миллионов долларов. Не приходится сомневаться в том, что «Атон Фарма» затратила миллионы долларов на доведение САГК до стадии лекарственного средства. Разработка лекарственных препаратов — весьма дорогостоящее занятие. Две компании, выпустившие на рынок ингибиторы ДНМТ1, относительно недавно были куплены более серьезными фармацевтическими фирмами, причем стоимость каждой сделки составили почти 3 миллиарда долларов[191]. Если компания затрачивает астрономические суммы денег на разработку или приобретение нового лекарственного препарата, то она вряд ли станет вести себя подобно пьяному матросу, когда дело дойдет до клинических испытаний.
Конечно, значительно большего прогресса можно было бы достичь, если бы мы могли проводить клинические испытания, заранее представляя себе, на борьбу с какими видами рака ориентировано то или иное средство, чем продолжать действовать, полагаясь на слепую удачу. К сожалению, большинство исследователей сходятся во мнении, что испытания противораковых препаратов на животных не позволяют в полной мере судить о том, насколько эти же средства окажутся эффективными при лечении рака у людей. Если говорить до конца откровенно, то это относится не только к противораковым препаратам, нацеленным на эпигенетические ферменты, но и практически ко всей онкологической фармации.
В стремлении обойти эту проблему исследователи как теоретических, так и практических областей пытаются сейчас найти следующее поколение эпигенетических мишеней в онкологии. ДНМТ1 принадлежит к числу ферментов относительно широкого поля деятельности. Метилирование ДНК это, скорее, все или ничего — подлежит ли CpG метилированию или нет? Не проявляют особую избирательность обычно и ГДАЦ. Если им удается получить доступ к ацетилированному лизину на отростке гистона, они удаляют эту ацетиловую группу. На отростке гистона обычно присутствует много лизинов — на гистоне H3, например, их семь. САГК способны подавлять, по меньшей мере, десять различных ферментов ГДАЦ. Вполне вероятно, что каждый из этого десятка способен дезацетилировать любой из семи лизинов на отростке H3, а это вряд ли можно назвать примером точной настройки.
Вот почему фармакологические исследования сейчас направлены на изучение различных эпигенетических ферментов, которые значительно более ограничены в своей деятельности, чтобы определить, какие из них играют важную роль в развитии разных видов рака. Главная причина этого в том, что проще будет понять клеточную биологию ферментов относительно ограниченного поля деятельности, а это, в свою очередь, поможет определить, какие лекарственные средства окажутся наиболее эффективными для борьбы с тем или иным видом рака.
Первая проблема в осуществлении этих планов выглядит довольно обескураживающей. Какие именно белки нужно исследовать? Существует, пожалуй, не меньше сотни ферментов, накладывающих или удаляющих гистоновые модификации («писателей» и «ластиков» эпигенетического кода). Наверное, не уступают им в численности и белки, считывающие эпигенетический код. Наша задача еще более усложняется тем, что многие из этих «писателей», «ластиков» и «читателей» активно взаимодействуют друг с другом. Как же нам приступить к определению наиболее подходящих кандидатов на главные роли в новых программах по разработке лекарственных средств?