Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности — страница 49 из 68

В нашем распоряжении нет таких химических соединений как 5-азацитидин и САГК, на которые мы могли бы опереться в своих исследованиях, поэтому нам остается только рассчитывать на собственные относительно неполные знания рака и эпигенетики. Одна из тем, обещающих принести плоды, состоит в изучении того, как гистоновые и ДНК модификации действуют в тандеме.

Наиболее сильно репрессированные участки генома отличаются высокими уровнями метилирования ДНК и чрезвычайной компактностью. ДНК в них становится предельно туго закрученной и практически недостижимой для ферментов, транскрибирующих гены. Но наибольшую важность представляет вопрос о том, как эти области подвергаются жесткой репрессии. Модель этого процесса продемонстрирована на рисунке 11.3.

Рис. 11.3. Схематические изображение того, как различные виды эпигенетических модификаций взаимодействуют друг с другом, постепенно создавая все более жестко репрессированный и туго закрученный участок хромосомы, в результате чего клетке становится чрезвычайно сложно экспрессировать гены с этого участка


На этой модели показана последовательная цепочка событий, приводящих клетку во все более репрессивное состояние. В соответствии с этой моделью, репрессивные гистоновые модификации притягивают метилтрансферазы ДНК, которые осуществляют метилирование ДНК в области этих гистонов. Это метилирование, в свою очередь, притягивает больше модифицирующих репрессивные гистоны ферментов, в результате чего возникает неизменный цикл, что, в свою очередь, приводит к формированию все более неблагоприятного для экспрессии генов участка.

Данные экспериментов подтверждают, что во многих случаях эта модель соответствует действительности. Репрессивные гистоновые модификации могут выступать в роли «наживки» для привлечения метилирования ДНК к промотору гена-супрессора новообразований. Одним из наиболее ярких примеров этого является эпигенетический фермент, который мы уже встречали в предыдущей главе, под названием EZH2. Белок EZH2 добавляет метиловые группы к лизиновой аминокислоте в позиции 27 на гистоне H3. Эта аминокислота известна как H3K27. К — это однобуквенный код лизина (L — код другой аминокислоты, которая называется лейцин).

Метилирование H3K27 само по себе может подавить экспрессию гена. Однако, по меньшей мере в некоторых типах клеток млекопитающих, это гистоновое метилирование привлекает метилтрансферазы ДНК к тому же самому участку хроматина[192][193]. В число метилтрансфераз ДНК входят ДНМТ3А и ДНМТ3Б. Это важно, поскольку ДНМТ3А и ДНМТ3Б способны осуществлять процесс, известный как независимое метилирование ДНК. Иначе говоря, они могут метилировать необработанную ДНК и создавать совершенно новые участки чрезвычайно репрессированного хроматина. В результате, клетка получает возможность превратить относительно непостоянную репрессивную метку (метилирование H3K27) в более стабильное метилирование ДНК.

Не менее важны и другие ферменты. Фермент под названием LSD1 удаляет метиловые группы с гистонов — это «ластик» эпигенетических модификаций[194]. Особенно активно он делает это в позиции 4 на гистоне H3 (H3K4). H3K4 представляет собой противоположность H3K27, так как когда H3K4 свободен от метиловых групп, гены обычно остаются подавленными.

Неметилированный H3K4 может связывать белки, и один из них называется DNMT3L. Пожалуй, не должно вызывать удивления то, что он родственен ДНМТ3А и ДНМТ3Б. DNMT3L сам не метилирует ДНК, но притягивает ДНМТ3А и ДНМТ3Б к неметилированному H3K4. В этом состоит еще один способ наложения стабильного метилирования ДНК на прежде девственный участок[195].

По всей вероятности, многие гистоны, расположенные у промоторов генов-супрессоров новообразований, способны нести на себе обе эти репрессивные гистоновые метки — метилирование H3K27 и неметилирование H3K4, — которые, действуя одновременно, влияют на метилтрансферазы ДНК еще активнее.

И EZH2, и LSD1 способны активировать гены при определенных видах рака, и их экспрессия согласуется с тяжестью заболевания и уровнем смертности пациентов[196][197]. По общему правилу, чем более активны эти ферменты, тем ниже шансы пациентов на благоприятный исход.

Итак, пути воздействия гистоновых модификаций и метилирования ДНК постоянно пересекаются. Это может объяснить, по крайней мере отчасти, одну из загадок современной эпигенетической терапии. Почему такие химические соединения как 5-азацитидин и САГК всего лишь контролируют раковые клетки, а не уничтожают их полностью?

В предложенной нами модели при помощи 5-азацитидина можно подавлять метилирование ДНК, лишь пока пациент принимает этот препарат. К несчастью, многие противораковые лекарственные средства обладают весьма опасными побочными эффектами, и ингибиторы ДНМТ не являются исключением. Постепенно эти побочные эффекты могут превратиться в настолько серьезную проблему, что пациенты оказываются вынужденными прекратить прием лекарств. Однако раковые клетки больных по-прежнему могут сохранить гистоновые модификации у супрессоров новообразований. Как только пациент перестает принимать 5-азацитидин, эти гистоновые модификации практически немедленно снова начинают притягивать ферменты ДНМТ, восстанавливая стабильную репрессию экспрессии генов.

Некоторые исследователи проводят клинические испытания, одновременно применяя САГК и 5-азацитидин, и пытаются вмешаться в этот цикл, разрушая механизмы эпигенетического подавления ДНК и гистонов. Пока неясно, окажутся ли их усилия успешными. В случае неблагоприятного исхода можно будет предположить, что в восстановлении метилирования ДНК низкие уровни гистонового ацетилирования играют далеко не главную роль. Возможно, для этого более важны некие особые гистоновые модификации, подобные тем, которые мы только что описали. Но мы пока не имеем лекарственных средств для подавления каких-либо других эпигенетических ферментов, так что на настоящий момент мы зашли в тупик, где мы просто лишены возможности выбора.

В будущем, возможно, нам вовсе не придется пользоваться ингибиторами ДНМТ. Связь между метилированием ДНК и гистоновыми модификациями при раке не абсолютна. Если островок CpG метилирован, то расположенный под ним ген подавлен. Но существуют и гены-супрессоры новообразований, которые располагаются под неметилированными островками CpG, как и такие, которые вообще не имеют островков CpG. Эти гены также могут быть подавлены, но исключительно благодаря гистоновым модификациям[198]. Это продемонстрировал Жан-Пьер Исса из Андерсоновского Ракового центра Хьюстона, сделавший огромный вклад в клиническое применение методик эпигенетической терапии. В таких случаях, если нам удастся обнаружить подходящие эпигенетические ферменты, на которые следует направить ингибиторы, у нас, возможно, получится возобновить экспрессию супрессоров новообразований, и тогда нас уже перестанет волновать вопрос метилирования ДНК.

Шаткое перемирие

Есть ли что-то особенное в генах-супрессорах новообразований, которые подавляются эпигенетическими модификациями? На этот счет существуют две взаимоисключающие теории. Согласно первой из них, эти гены не представляют собой ничего из ряда вон выходящего, и этот процесс абсолютно случаен. По этой теории, время от времени те или иные супрессоры новообразований случайно подвергаются эпигенетическим модификациям. Если в результате этого происходит изменение экспрессии гена, то это может означать, что клетки с такой эпигенетической модификацией начинают расти чуть быстрее и чуть лучше, чем их соседи. Это дает клеткам преимущество в росте, и они перерастают окружающие их клетки, постепенно аккумулируя все больше эпигенетических и генетических изменений, в результате чего они трансформируются в раковые.

Другая точка зрения заключается в том, что супрессоры новообразований, подавляемые эпигенетически, являются каким-то образом выбранными для этого процесса мишенями. Это не просто случайное стечение неблагоприятных обстоятельств, так как на самом деле риск именно этих генов подвергнуться эпигенетической репрессии превышает среднестатистические показатели.

В последние годы — когда в нашем распоряжении появились технологии для составления все более точных профилей эпигенетических модификаций в самых разнообразных типах клеток — мы начинаем склоняться в сторону второй позиции. Существует целый ряд генов, которые, как представляется, более других уязвимы для репрессии эпигенетическими механизмами.

На первый взгляд это может показаться полностью противоречащим здравому смыслу. Как, ради всего святого, могло случиться, что в результате миллиардов лет эволюции мы оказались обладателями клеточного механизма, делающего нас уязвимыми перед канцерогенными изменениями? Однако это следует рассматривать в контексте. Большинство эволюционных процессов неразрывно связаны со стремлением индивидуума оставить после себя как можно более многочисленное потомство. Для человека, достигающего репродуктивного возраста, крайне важно, чтобы его раннее развитие протекало максимально продуктивно. В конце концов, о каком воспроизводстве можно говорить, не пройдя благополучно эмбриональную стадию развития? Но как только мы достигаем репродуктивного возраста и получаем возможность продолжить род, то, с эволюционной точки зрения, нам совсем необязательно продолжать жить после этого еще несколько десятилетий.

Именно по этой причине в ходе эволюции предпочтение отдавалось совершенствованию клеточных механизмов, обеспечивающих эффективные рост и развитие на ранних стадиях, включая и производство многочисленных и разнообразных типов тканей. Многие из этих типов тканей содержат в себе запасы стволовых клеток, специфических для каждой ткани. Эти клетки необходимы организмам для роста тканей в процессе нашего взросления и для регенерации тканей после травм. Назначения и отличительные особенности этих специфических для разных тканей стволовых клеток контролируются отлаженными механизмами эпигенетических модификаций. Пользуясь эпигенетическими модификациями для контроля экспрессии генов, клетки сохраняют некоторую гибкость. Например, они имеют возможность превращаться в более специализированные клетки. Возможно, когда мы говорим о раке, еще более важно то, что эпигенетические модификации также позволяют клеткам делиться и создавать новые стволовые клетки. Поэтому мы никогда не будем испытывать недостатка в клетках кожи или клетках костного мозга, даже если проживем сотню лет.