Исследователи обнаружили, что абсолютные уровни метилирования ДНК в лейкоцитах некоторых образцов со временем меняются. Эти изменения не всегда были одинаковыми. У одних людей уровни метилирования ДНК с возрастом повышались, тогда как у других понижались. Направление изменений, как выяснилось, было однотипным в семьях. Это может означать, что связанные с возрастом изменения в метилировании ДНК были вызваны генетическими факторами или воздействием общей для семьи окружающей среды. Ученые также в деталях исследовали метилирование свыше 1500 отдельных участков CpG в геноме. Эти участки, главным образом, были связаны с кодирующими белки генами. На этих особых участках исследователи обнаружили те же тенденции, которые они зафиксировали при изучении абсолютных уровней метилирования ДНК. У одних исследуемых метилирование ДНК на особых участках оказалось повышенным, а у других пониженным. Уровни метилирования ДНК были повышены или понижены по меньшей мере на 20 процентов приблизительно у каждого десятого из всех, принимавших участие в исследованиях.
На основании данных, полученных в ходе экспериментов, ученые заявили, что «полученные ими результаты свидетельствуют в пользу предположения о том, что связанная с возрастом утрата привычных эпигенетических схем является механизмом, обусловливающим развитие распространенных возрастных заболеваний»[237]. Действительно, эти данные согласуются с моделью, в соответствии с которой возрастные ухудшения здоровья провоцируются эпигенетическими механизмами, однако в этом утверждении присутствуют оговорки, о которых мы не должны забывать.
В частности, подобного рода эксперименты обнаруживают важные взаимосвязи между эпигенетическими изменениями и возрастными заболеваниями, но они не доказывают, что одно событие является следствием другого. Люди наиболее часто тонут в периоды, когда растут объемы продаж лосьонов для загара. Из этого факта можно было бы сделать заключение, что лосьоны для загара каким-то образом воздействуют на людей, лишая их способности уверенно держаться на воде. Однако, как мы понимаем, объемы продаж лосьонов для загара повышаются в жаркую погоду, когда многие люди предпочитают проводить досуг у воды. Чем больше людей плавает, тем в среднем выше число утонувших. Это и есть очевидная взаимосвязь между двумя рассмотренными нами факторами (продажа лосьонов и смертность при купании), но ее присутствие не означает, что одно событие вытекает из другого.
Следовательно, хотя мы и знаем, что эпигенетические модификации со временем меняются, одно это не может служить доказательством, что такие изменения являются причинами заболеваний и ухудшения здоровья, ассоциирующимися с пожилым возрастом. Теоретически, эти изменения могут быть всего лишь случайными вариациями, не имеющими каких-либо функциональных последствий. Они могут быть только лишь изменениями эпигенетического фонового шума в клетке. Мы даже не знаем, приводят ли во многих клетках измененные схемы эпигенетических модификаций к изменениям в экспрессии генов. Ответ на этот вопрос был бы чрезвычайно важен, но получить его в отношении человека более чем затруднительно.
Впрочем, существуют некоторые эпигенетические модификации, которые определенно играют свою роль в возникновении или развитии заболеваний. Наиболее ярким примером такого рода является рак, уже рассмотренный нами в главе 11. Свидетельством тому служат эпигенетические препараты, способные лечить некоторые специфические виды рака. Кроме того, подтверждением этому являются значительные массивы данных, полученных в различных экспериментальных системах. Они свидетельствуют, что изменение эпигенетической регуляции в клетке повышает вероятность ее перерастания в раковую клетку или способствует тому, что клетка, уже являющаяся раковой, становится более агрессивной.
Одним из вопросов, обсуждавшихся в главе 11, было увеличение метилирования ДНК, часто наблюдаемое на промоторах генов-супрессоров новообразований. Такое повышенное метилирование ДНК подавляет экспрессию генов-супрессоров новообразований. Как ни странно, увеличение метилирования ДНК на особых участках часто обнаруживается на общем фоне снижения уровня метилирования ДНК во многих других областях генома в той же раковой клетке. Это понижение метилирования может быть вызвано снижением экспрессии или активности деятельности метилтрансферазы ДНК, ДНМТ1. Такое глобальное падение уровня метилирования ДНК также может способствовать развитию рака.
Для исследования этого вопроса Руди Джениш создал линию мышей, в клетках которых белок Dnmt1 экспрессировался приблизительно лишь на 10 процентов. Уровни метилирования ДНК в их клетках были очень низкими по сравнению с аналогичными показателями обычных мышей. У этих мышей с мутировавшим геном Dnmt1, рождавшихся мелкими и слабыми, в возрасте между четвертым и восьмым месяцами развивались агрессивные новообразования иммунной системы (Т-клеточные лимфомы). Это было связано с перестановками определенных хромосом и, особенно, в дополнительной копии хромосомы 15 раковых клеткок.
Профессор Джениш предположил, что низкие уровни метилирования ДНК делают хромосомы очень нестабильными и подверженными разрывам. Вследствие этого, возрастает опасность того, что хромосомы могут соединиться неверно. Представьте, что вы разломали пополам розовую и зеленую карамельную конфету, получив в итоге четыре кусочка. Вы можете снова вернуть им первоначальный вид, склеив расплавленным сахаром, и тем самым получить новые две единицы способствующего развитию кариеса лакомства. Но, если вы будете заниматься этим в темноте, то возможно у вас получится некий «гибрид», в котором одна половинка будет зеленой, а другая розовой.
Конечным результатом повышения хромосомной нестабильности у мышей Руди Джениша стала аномальная экспрессия генов. Это, в свою очередь, повлекло за собой стремительное разрастание в высшей степени агрессивных клеток, что и привело к раку[238][239]. Эти данные и является одной из причин, по которым ингибиторы ДНМТ едва ли могут быть использованы для лечения каких-либо иных, кроме рака, заболеваний. Опасность их в том, что эти препараты могут вызвать снижение метилирования ДНК в здоровых клетках, а это может вызвать предрасположенность некоторых типов клеток к раку.
Эти данные свидетельствуют, что сам по себе уровень метилирования ДНК не является важным фактором. Куда большее значение имеет то, где именно в геноме происходят изменения в метилировании ДНК.
Общее снижение уровней метилирования ДНК, сопутствующее старению, было обнаружено не только у людей и мышей, но также и у представителей многих других видов, от крыс до горбуш[240]. Пока еще нет полной ясности в вопросе, почему низкие уровни метилирования ДНК ассоциируются с нестабильностью генома. Возможно, дело в том, что высокие уровни метилирования ДНК могли бы привести к очень компактному строению ДНК, которая структурно стала бы более стабильной. В конце концов, значительно легче перекусить кусачками одну жилу проволоки, чем несколько жил, сплетенных в прочный металлический жгут.
Важно представлять себе, какие титанические усилия прилагают клетки для заботы о своих хромосомах. Когда хромосома рвется, клетка, если это возможно, мгновенно «латает» разрыв. Если же такой возможности у нее нет, то она может запустить механизм саморазрушения, в конечном итоге приводящий к ее «самоубийству». Происходит это потому, что поврежденные хромосомы могут быть опасными. Лучше убить одну клетку, чем позволить ей выжить, неся в себе поврежденный генетический материал. Например, представьте себе, что в одной клетке рвется одна копия хромосомы 9 и одна копия хромосомы 22. Они могут быть починены надлежащим образом, но может случиться и так, что в результате этого ремонта часть хромосомы 9 соединится с частью хромосомы 22.
На самом деле подобная перестройка хромосом 9 и 22 случается относительно часто в клетках иммунной системы. Более того, она происходит настолько часто, что этот гибрид хромосомы 9 и хромосомы 22 стал обозначаться особым термином. Он называется филадельфийской хромосомой, в честь города, где был впервые описан. 95 процентов людей, больных разновидностью рака, которая называется хронической гранулоцитарной лейкемией, имеют в своих раковых клетках филадельфийскую хромосому. Эта аномальная хромосома вызывает такой вид рака в клетках иммунной системы по той причине, что разрыв и воссоединение хромосом происходит в определенном месте генома. Соединение двух хромосомных участков приводит к созданию гибридного гена под названием Bcr-Abl, который активно вызывает чрезвычайно быстрое деление клеток.
Таким образом, наши клетки сформировали очень сложные и безотлагательные способы немедленного восстановления разорвавшихся хромосом, призванные уберечь их от подобного рода аномальных слияний. А для этого клетки должны уметь распознавать свободные концы ДНК, которые образуются, когда хромосома распадается надвое.
Однако не все так просто. Каждая хромосома в наших клетках вполне естественным образом имеет два свободных конца ДНК, по одному с каждой стороны. И что-то должно не позволять восстановительной механике ДНК считать, что эти концы нуждаются в ремонте. Этим «чем-то» является узкоспециализированная структура, которая называется теломером. На каждом конце каждой хромосомы находится по одному теломеру, то есть в каждой клетке человека содержится по 92 теломера. Именно они блокирует механизм восстановления ДНК на концах хромосом.
Теломеры играют решающую роль в борьбе со старением. Чем чаще делится клетка, тем мельче становятся ее теломеры. Таким образом, по мере старения организма теломеры становятся все короче. В конечном итоге они уменьшаются до такой степени, что оказываются не в силах функционировать должным образом. Клетки перестают делиться и могут даже активировать собственный механизм саморазрушения.