Понимание механизмов установления половой принадлежности у крокодилов и их родственников уже в самом ближайшем будущем может стать очень важным требованием для сохранения этих видов. Глобальные перепады температур, вызванные изменениями климата, могут иметь самые неблагоприятные последствия для земноводных, если доля одного или другого пола в их популяциях резко сократится. Некоторые авторы даже высказывают такую точку зрения, что подобный феномен, возможно, привел к вымиранию динозавров[292].
Изложенные выше мысли представляют собой вполне конкретные и легко проверяемые гипотезы. Мы можем выдвинуть огромное множество и других предположений, просто внимательнее наблюдая окружающий нас мир. Довольно рискованно делать какие-либо масштабные заявления по поводу того, каких открытий и откровений можно ждать от новых исследований в области эпигенетики. Это еще очень молодая наука, стремящаяся развиваться в самых разных и подчас неожиданных направлениях. Но давайте все же возьмем на себя смелость сделать некоторые предположения о том, что может произойти в этой области в обозримом будущем.
Начнем с самого очевидного. До 2016 года, по меньшей мере, одна Нобелевская премия по физиологии и медицине будет присуждена кому-либо из ведущих специалистов в эпигенетике. Вопрос только в том, кому именно, поскольку достойных кандидатов и сейчас более чем достаточно.
Многие эпигенетики искренне недоумевают, почему эту премию до сих пор не получила Мэри Лайон за свою удивительно пророческую работу, посвященную инактивации хромосомы X. Хотя в ее ключевых докладах, заложивших концептуальную основу инактивации хромосомы X, и не было приведено много новых экспериментальных данных, но то же самое можно сказать и в отношении основополагающей работы Джеймса Уотсона и Френсиса Крика о строении ДНК[293]. Велико искушение порассуждать на тему того, что для получения Нобелевской премии необходимо, кроме научных достижений, обладать еще и соответствующей половой принадлежностью, однако такая точка зрения отчасти основывается на мифе, выросшем вокруг имени Розалинд Франклин. Работая в области рентгеновской кристаллографии, она получила данные, сыгравшими важную роль в разработке модели ДНК Уотсона—Крика. Когда в 1962 году Нобелевская премия была присуждена Уотсону и Крику, ее также получил руководитель лаборатории Розалинд Франклин, профессор Морис Уилкинс из лондонского Королевского колледжа. Однако сама Розалинд Франклин не была удостоена премии не потому, что была женщиной. Она не смогла получить ее, потому что, как это ни прискорбно, скончалась от рака яичников в возрасте 37 лет, а Нобелевская премия никогда не присуждается посмертно.
На страницах этой книги мы уже встречались с ученым по имени Брюс Каттенач. Кроме работы об эффектах исходного родителя, он также провел несколько новых экспериментов на ранних стадиях изучения молекулярных механизмов, лежащих в основе подавления хромосомы X[294]. По этой причине большинство исследователей считают его, наряду с Мэри Лайон, достойным кандидатом на получение Нобелевской премии. Мэри Лайон и Брюс Каттенач большую часть своих исследований проводили в 1960-е годы и теперь давно уже на пенсии. Однако Роберт Эдвардс, пионер в экспериментах по оплодотворению в лабораторных условиях, получил Нобелевскую премию в 2010 году в возрасте 85 лет, так что у профессоров Лайон и Каттенача еще есть время и надежда.
Работа Джона Гердона и Шиньи Яманаки, посвященная перепрограммированию клеток, перевернула наши представления о том, как контролируются судьбы клеток, и потому оба они вправе в самое ближайшее время заказывать билеты в Стокгольм. Несколько менее очевидную, но вместе с тем в высшей степени привлекательную команду составили бы Азим Сурани и Эмма Уайтло. Их совместная работа не только ярко продемонстрировала, как обычно перезагружается геном при половом воспроизведении, но и показала, как порой этой процесс может нарушаться и приводить к наследованию приобретенных характеристик. Дэвид Эллис принадлежит к ведущим специалистам в изучении эпигенетических модификаций гистонов, и его кандидатура также выглядит весьма привлекательной, возможно, в партнерстве со светилами в области метилирования ДНК, такими как, в первую очередь, Эдриан Берд и Питер Джонс.
Питер Джонс стал первопроходцем в развитии эпигенетических способов лечения, а это еще одна стремительно растущая отрасль эпигенетики. В первых рядах эпигенетической терапии решительно маршируют ингибиторы гистондеацетилаз и метилтрансфераз ДНК. Огромное число клинических испытаний этих соединений до последнего времени было направлено на поиски борьбы с раком, но теперь ситуация начинает меняться. В настоящий момент уже начались клинические испытания ингибитора гистондеацетилаз класса сиртуинов для лечения болезни Хантингтона, тяжелого наследственного нейродегенеративного расстройства[295]. Огромное внимание сейчас сосредоточено на разработке лекарственных препаратов, способных подавлять узкоспециализированные эпигенетические ферменты, что позволит препятствовать развитию не только рака, но и неонкологических заболеваний. К таким ферментам относятся те, которые меняют всего лишь одну модификацию на одной конкретной позиции аминокислоты в гистоновых белках. В эти разработки по всему миру вкладываются сотни миллионов долларов как новыми компаниями, занимающимися биотехнологиями, так и фармацевтическими гигантами. В ближайшие пять лет мы наверняка станем свидетелями того, как созданные в результате этих исследований новые лекарственные средства для борьбы с раком, пройдут клинические испытания, а в течение десятилетия появятся препараты для лечения и других, менее угрожающих жизни заболеваний[296].
Наше расширяющееся понимание эпигенетики и особенно трансгенерационной наследственности не только способствует появлению новых возможностей, но и порождает определенные проблемы в разработке новых лекарственных средств. Если мы создадим новые лекарства, способные вмешиваться в эпигенетические процессы, то не повлияют ли эти препараты также и на перепрограммирование, которое обычно происходит при производстве половых клеток? Теоретически это может привести к физиологическим изменениям, которые затронут не только проходящего лечение человека, но также и его детей и внуков. Возможно, наши опасения не должны ограничиваться только химическими соединениями, воздействующими на конкретные эпигенетические ферменты. Как мы узнали из главы 8, загрязняющий агент под названием винклозолин оказывает свое губительное воздействие на многие поколения грызунов. Если властные структуры, регулирующие лицензирование новых лекарственных препаратов, будут настаивать на проведении их трансгенерационных исследований, то процесс создания новых лекарств существенно усложнится, а расходы на его осуществление возрастут многократно.
На первый взгляд такое развитие событий может показаться вполне разумным, ведь все мы, в конце концов, хотим, чтобы лекарства были максимально безопасными. Но что тем временем будет происходить со всеми больными, отчаянно нуждающимися в новых препаратах, которые могли бы спасти их от смертельных заболеваний, или с теми пациентами, которым требуются новые, более совершенные лекарства, способные освободить их от мук и беспомощности и обеспечить долгую и полноценную жизнь? Чем больше времени требуется лекарствам, чтобы проделать путь из лабораторий в аптеки, тем дольше страдают нуждающиеся в них больные. Будет очень интересно наблюдать, как через ближайшие десять-пятнадцать лет смогут решить этот непростой вопрос все заинтересованные стороны — фармацевтические компании, регулирующие органы и представители больных.
Трансгенерационные эффекты эпигенетических изменений способны в ближайшее десятилетие оказать огромное влияние на здоровье человека, и причиной тому могут быть не только лекарства или загрязняющие агенты, но также продукты и питание. Свое путешествие по эпигенетическим ландшафтам мы начинали с краткого описания Голландской голодной зимы. Последствия ее сказались не только на тех, кто пережил эту пору, но и на их потомках. Сейчас же мир находится в тисках глобальной эпидемии ожирения. Даже если обществу и удастся поставить в будущем эту проблему под свой контроль (а в западном полушарии каких-либо существенных предпосылок для этого не наблюдается), в настоящий момент мы уже рискуем оставить своим детям и внукам очень неблагоприятное эпигенетическое наследство.
Питание в целом является той областью, где можно с достаточной уверенностью предсказать ведущую роль эпигенетики, которую она непременно начнет играть в следующее десятилетие. Вот всего лишь некоторые примеры того, что нам достоверно известно в настоящий момент.
Фолиевая кислота является одной из добавок, которые рекомендуется принимать беременным женщинам. Понимание необходимости увеличения запасов в организме фолиевой кислоты на самых ранних этапах беременности стало настоящим триумфом здравоохранения, поскольку ее прием резко сокращает случаи развития расщелины позвоночника у новорожденных[297]. Фолиевая кислота требуется для производства химического соединения под названием SAM (полностью оно называется s-аденозилметионин). SAM представляет собой молекулу, которая отдает метиловую группу, когда метилтрансферазы ДНК модифицируют ДНК. Если в рационе новорожденных крысят уровни содержания фолиевой кислоты низкие, у них развивается аномальная регуляция импринтинговых областей генома[298]. Сейчас мы находимся только в самом начале понимания того, насколько положительно может повлиять фолиевая кислота на эпигенетические механизмы.
Ингибиторы гистондеацетилазы в нашем рационе также способны сыграть важную роль в профилактике рака и, возможно, других заболеваний. Пока мы располагаем в основном теоретической информацией по этому вопросу. Маслянокислый натрий в сыре, сульфорафан в спаржевой капусте и диаллиловый дисульфид в чесноке — все это слабые ингибиторы гистондеацетилаз. Исследователи выдвигают предположение, что высвобождение этих соединений из продуктов питания в процессе их переваривания помогает регулировать экспрессию генов и способствует размножению клеток в пищеварительном канале