новых мутаций в последующих поколениях клеток. Этот процесс отражает суть стадии промоции.
Вторая стадия является обратимой, то есть рак может отступить, как и на первой стадии.
В поздний период промоции в качестве действующих агентов, кроме промоторов, могут быть и другие механизмы регуляции пролиферации клеток, такие как иммунный надзор, агенты, стимулирующие прогрессию (третью стадию канцерогенеза), и др.
Подытожим, что происходит на первых двух стадиях канцерогенеза: воздействие инициатора вызывает мутационную активацию онкогена и/или «выключение» антионкогена, а последующий затем эффект промоторов приводит к усилению пролиферации и интенсивному размножению таких клеток-мутантов. Для этого необходимо длительное и относительно непрерывное воздействие в строго последовательном сочетании – вначале инициирующих, а затем промотирующих факторов. В случае применения промотора до инициации или когда пауза между воздействием инциатора и промотора слишком велика, опухоль не возникает.
Третья стадия канцерогенеза – прогрессия. Прогрессия характеризуется тем, что в изменившихся в результате мутации клетках возникают дополнительные изменения в структуре генома. Также возникает специфический отбор групп клеток, которые проявляют наибольшую агрессию в отношении организма хозяина, а также имеют большую приспособленность к меняющимся условиям существования. Все это приводит к тому, что на этой стадии опухоль наделена сверхзлокачественными свойствами – она способна к инфильтрации и метастазированию.
Несмотря на то, что все клетки опухоли могут образоваться из одной единственной трансформированной стволовой клетки, они могут на третьей стадии канцерогенеза отличаться друг от друга сильнее, чем дифференцированные клетки соответствующей нормальной ткани.
В ходе роста опухолевые клетки, с одной стороны, автономизируются от организма, но с другой – находятся под постоянным давлением различных факторов отбора, то есть эволюционируют как одноклеточный организм. Именно эволюция клонов, приводящая к их разнообразию и увеличению приспособительной жизнеспособности, а не просто рост и расселение и составляет суть понятия «опухолевая прогрессия».
Растущая опухоль стремится к обогащению такими субклонами, которые «выбивают лишних» в конкурентных межклеточных взаимоотношениях. В этом смысле внутриопухолевая селекция имеет направленный, адаптационный характер, так как проявляется в отборе клеток, наиболее приспособленных к дальнейшему выживанию, росту, инвазии и метастазированию.
Таким образом, в результате многолетней прогрессии процесс из первоначально моноклональной стадии переходит в позднюю, поликлональную, а клетки опухоли ко времени их клинического обнаружения отличаются выраженной гетерогенностью, то есть гено– и фенотипической неоднородностью. Гетерогенность лежит в основе прогрессии, направленной в сторону усиления злокачественных свойств опухоли от плохого к худшему.
Отбор наиболее злокачественных клеток, способных лучше выживать, – это не путь прогресса, а путь антиэволюции и разрушения организма, при котором высокосложная клетка может деградировать до примитивно простой, обеспечивающей только саму себя, но не организм (Угляница К.Н., и др., статья на сайте: medbe.ru). Так, путем отбора клеточных популяций и непрерывного их развития в направлении все большей автономии формируются субклоны, умеющие ускользать от иммунного ответа, лучше приспособленные к неблагоприятным условиям (кислородному дефициту и др.), способные к инфильтрирующему росту и метастазированию, устойчивые к лучевой и лекарственной терапии и т. д. Кроме того, может наблюдаться вариабельность реакции опухоли на угнетающие (или стимулирующие) ее рост факторы. Например, в процессе прогрессии изменяется способность опухолевых клеток реагировать на гормональные влияния, и часто гормоночувствительные опухоли становятся гормонорезистентными (нечувствительными к гормонам) вследствие утраты ими специфических рецепторов гормонов.
Онкологам хорошо известно, что трудно бывает обнаружить ничем не проявляющую себя первичную опухоль при наличии отдаленных метастазов, особенно низкодифференцированных.
Факторами избирательного мутационного отбора опухолевых клеток являются:
• выраженная генетическая нестабильность (встречается чаще других факторов), которая заключается в повышенной степени подверженности вторичным (случайным, спонтанным) мутациям в процессе роста субклонов;
• иммунологические механизмы. Клетки с высокой концентрацией опухолевых антигенов разрушаются иммунными механизмами, но рост агрессивных клонов сопровождается часто уменьшением концентрации опухолевых антигенов, и они становятся невидимыми для иммунитета;
• гормональные факторы;
• инфекция (чаще вирусная);
• воздействие канцерогенных или токсических веществ;
• лечебные (лучевая и лекарственная терапия) мероприятия и др.
При любых воздействиях частота мутаций существенно возрастает в случае утраты опухолевыми клетками механизмов их уничтожения или коррекции, которые обеспечиваются в основном геном-супрессором р53, контролирующим постоянство генома посредством апоптоза. Поэтому выключение гена р53 и блокировка апоптоза на разных стадиях канцерогенеза в значительной степени определяют дальнейшую прогрессию опухоли.
Именно способность злокачественных клеток к изменчивости и образованию клеточных вариантов является одним из самых коварных свойств опухоли. Первичным, или неотъемлемым, признаком опухоли является нерегулируемый рост, а остальные – это «вторичные» свойства или признаки, которые как раз и изменяются в ходе прогрессии. Поэтому злокачественные клетки даже одной и той же опухоли различаются по метастатическому потенциалу, радиорезистентности, чувствительности к противоопухолевым препаратам и т. д., что и делает их относительно неуязвимыми к воздействию специальных методов лечения. Некоторые исследования указывают на возможность снижения злокачественного потенциала опухоли. Способность опухоли к регрессии, а опухолевых клеток к нормализации фенотипа открывает новые возможности терапии, направленной не на уничтожение опухолевой клетки, а на снижение злокачественных свойств и повышение ее дифференцировки.
НАУЧНО
5.3. Непосредственно об эпигенетике рака
Более половины генов, включая протоонкогены и гены-супрессоры опухолевого роста, содержат CpG-островки. В нормальных соматических клетках большинство CpG-островков не метилированы.
Протоонкоген – обычный ген, который может стать онкогеном из-за мутаций или повышения экспрессии. Многие протоонкогены кодируют белки, которые регулируют клеточный рост и дифференцировку. Протоонкогены часто вовлечены в пути передачи сигнала и в регуляцию митоза обычно через свои белковые продукты. После активации (происходящей из-за мутации самого протоонкогена или других генов) протоонкоген становится онкогеном и может вызвать опухоль) (Источник: «Википедия»).
Аберрантное метилирование (основное эпигенетическое изменение, характеризующее новообразования в кишечнике) CpG-островка какого-либо гена-супрессора опухолевого роста может приводить к потере его экспрессии, способствуя инициации и прогрессии опухоли. Причина аберрантного метилирования до сих пор остается неизвестной. Оно может быть вызвано воздействием метилтрансфераз или других хроматин-связывающих белков (Поке и др., 2010).
К настоящему времени обнаружено и идентифицировано большое количество метилированных генов, которые связаны с возникновением онкологических заболеваний. Метилирование может быть сниженным (гипометилирование) и повышенным (гиперметилирование), глобальным (тотальным, распространенным) и локальным (местным). Локальное гиперметилирование, распространяющееся на небольшую часть CpG-динуклеотидов, которые входят в состав CpG-островков, приводит к инактивации (выключению, существенному снижению активности) генов-супрессоров опухолевого роста (генов, подавляющих опухолевый рост) (Ченг и др., 2009). Глобальное гипометилирование в повторяющейся последовательности ДНК нарушает стабильность хромосомы и увеличивает скорость геномных перестроек. Это, в свою очередь, увеличивает вероятность образования опухоли. Потеря глобального (тотального) метилирования генома стала первым эпигенетическим изменением, обнаруженным более 25 лет назад (Гамасоса и др., 1983; Сузуки и др., 2006) и продолжает оставаться одним из наиболее распространенных молекулярных изменений в наши дни, наблюдаемых при раке толстой кишки, желудка, легких, печени, молочной железы, мочевого пузыря, яичников и эндометрия. Кроме того, зачастую существует связь между стадией заболевания и степенью гипометилирования ДНК, что позволяет использовать последнюю в качестве диагностического маркера, а также прогнозировать течение заболевания.
Потеря метилирования (гипометилирование) ДНК происходит во время стадии предрака или во время пренеопластической стадии канцерогенеза (Накагава и др., 2005). Если говорить о стадиях канцерогенеза, описанных ранее, то на стадии инициации и промоции. Уровень гипометилирования ДНК в опухолях выше (на стадии прогрессии), чем на стадиях инициации и промоции. Во время динамики заболевания от нормального состояния до IV стадии опухоли при различных видах рака происходит накопление изменений метилирования. Все это дает основание полагать, что потеря метилирования ДНК при онкологических заболеваниях не является следствием трансформации опухоли, а играет ключевую роль в появлении онкологического заболевания.
Широкомасштабное исследование, проведенное в испанской популяции, показало, что существует ассоциация между гипометилированием ДНК и повышенным риском развития рака мочевого пузыря (Мур и др., 2008).
Поскольку геном млекопитающих состоит из относительно коротких неметилированных доменов, встроенных в матрикс длинных, устойчиво метилированных, то потеря метилирования происходит именно в этих областях генома. Так, деметилирование повторяющихся последовательностей, расположенных в различных отделах хромосом, может быть причиной хромосомных аномалий.