Есть идея! — страница 25 из 37

Особым изяществом отличается следующий вариант исходной задачи с шляпами 2 цветов и 3 действующими лицами, позволяющий исключить все недомолвки и неоднозначности, присущие задаче в ее традиционной постановке. Предположим, что трое людей сидят на стульях в затылок друг другу и каждый смотрит только прямо перед собой. Сидящий сзади видит шляпы обоих людей, сидящих перед ним. Сидящий посредине видит шляпу только того, кто сидит перед ним, а сидящий впереди не видит перед собой ни одной шляпы. (Все трое как бы страдают прогрессирующей слепотой, причем сидящий сзади видит лучше двух остальных, а сидящий впереди полностью ослеп.)

Судья соревнования на сообразительность выбирает 3 шляпы из 3 белых и 2 черных шляп. Сидящие зажмуривают глаза и открывают их по команде лишь после того, как им на головы наденут шляпы, а лишние шляпы уберут.

Судья спрашивает сидящего сзади, знает ли он цвет своей шляпы и получает отрицательный ответ. Сидящий посредине на тот же вопрос отвечает также отрицательно.

Когда же судья спрашивает у сидящего впереди, знает ли тот цвет своей шляпы, то получает ответ: «Знаю, у меня на голове белая шляпа». Каким образом сидящий впереди отгадал цвет своей шляпы?

Он рассуждал следующим образом: «Сидящий сзади ответит судье утвердительно лишь в том случае, если он видит 2 черные шляпы. Поскольку на вопрос судьи он ответил отрицательно, то это означает, что по крайней мере одна из двух шляп, которые он видит, не черная. Предположим, что у меня на голове черная шляпа. Тогда сидящий на среднем стуле видит черную шляпу и, услышав, что сосед сзади на вопрос судьи ответил отрицательно, догадается, что у него самого на голове должна, быть белая шляпа, так как в противном случае сосед сзади видел бы 2 черные шляпы и на вопрос судьи ответил бы утвердительно. Следовательно, если бы у меня на голове была черная шляпа, то сидящий посредине на вопрос судьи ответил бы утвердительно. Но он ответил отрицательно. Значит, он видит перед собой белую шляпу у меня на голове. Отсюда я заключаю, что мое исходное предположение ложно и у меня на голове белая шляпа».

Как и предыдущий вариант, эта задача также легко обобщается методом математической индукции на случай n людей «с прогрессирующей слепотой», сидящих в затылок друг другу на n стульях. Судья обходит всех участников состязания на сообразительность и каждому по очереди задает один и тот же вопрос: «Знаете ли вы, какого цвета шляпа у вас на голове?», причем первый спрашивает того, кто сидит сзади, потом сидящего перед ним и т. д. Запас шляп состоит из n белых и n − 1 черных шляп. Рассмотрим случай n = 4. Сидящий впереди «слепой» знает, что если шляпа черная, то трое сидящих сзади него видят ее и знают, что среди доставшихся им шляп черных не более двух. Тем самым задача сводится к предыдущей. Если на вопрос судьи сидящий сзади и тот, кто сидит непосредственно перед ним, ответили бы отрицательно, то сидящий непосредственно за «слепым» ответил бы утвердительно, как и в предыдущем случае. А поскольку он отвечает утвердительно, то «слепой» отбрасывает свое первоначальное предположение как ложное и заключает, что его шляпа должна быть белой. Математическая индукция позволяет распространить доказательство на случай n человек. Если на вопрос судьи все, кроме «слепого» отвечают отрицательно, то у всех n на головах должны красоваться белые шляпы.

Теперь мы уже достаточно подготовлены и к более трудному варианту. Предположим, что трем участникам состязания на сообразительность судья раздает шляпы, выбирая их в любом наборе из 3 белых и 2 черных шляп. Участников состязания судья опрашивает в том же порядке, что и прежде. Будет ли кто-нибудь из них на вопрос судьи всегда отвечать утвердительно? Предоставляем вам возможность самостоятельно решить эту задачу и доказать, что ее можно обобщить на случай n человек и n белых и n − 1 черных шляп. Кое-кто из участников на вопрос судьи всегда будет отвечать утвердительно. Первый, кто всегда отвечает судье утвердительно, — это первый из тех, кто сам носит белую шляпу и не видит ни одной белой шляпы перед собой.

Шляпы двух цветов эквивалентны шляпам, пронумерованным двоичными числами 0 и 1. Во многих задачах такого типа цвета шляп отличаются большим разнообразием (одну из таких задач мы рассмотрели) и разобраться в них легче, если каждый цвет заменить соответствующим натуральным числом. Рассмотрим, например, следующую игру для 2 лиц.

Судья выбирает любую пару последовательных натуральных чисел. Кружочек с одним из этих чисел судья приклеивает на лоб одному игроку, а кружочек со вторым числом — на лоб другому игроку. Каждый игрок видит число на лбу у другого, но не видит числа у себя на лбу.

Судья по очереди спрашивает у каждого из участников, знает ли тот, какое число у него на лбу, до тех пор, пока кто-нибудь из них не назовет число у себя на лбу. Методом математической индукции можно доказать, что если большее из 2 чисел равно n, то один участник игры ответит «да» n или n − 1 раз. Доказательство этого утверждения начинается с рассмотрения простейшего случая: чисел 1 и 2. Человек с числом 2 на лбу отвечает «да» на первый или на второй вопрос (в зависимости от того, к кому из двух участников игры судья обратится прежде), так как, видя на лбу у партнера число 1, он сразу же заключает, что у него самого на лбу число 2.

Рассмотрим теперь случай, когда выбраны числа 2 и 3. На первый вопрос человек с числом 3 на лбу ответит «нет», потому что у него на лбу могло бы стоять и число 1, и число 3. Затем он может рассуждать так: «Предположим, что у меня на лбу число 1. Тогда мой партнер, у которого на лбу число 2, на вопрос судьи ответил бы «да» (как в предыдущем случае). Следовательно, если он ответит «нет», то это будет означать, что у меня на лбу стоит число 3, а не 1». И когда судья задаст игроку с числом 3 на лбу свой вопрос вторично, тот ответит «да». Так же как в задачах со шляпами, это рассуждение обобщается на случай любых двух последовательных натуральных чисел.

Для полного решения задачи необходимо лишь знать, в каких случаях игрок ответит «да» на n-й вопрос и в каких на (n − 1)-й вопрос. Исследовав задачу до конца, вы убедитесь в том, что это зависит от двух причин: во-первых, от того, кому из игроков судья задает первый вопрос, и, во-вторых, от четности числа n.

Более тонкое обобщение задачи было исследовано недавно знаменитым математиком из Кембриджского университета Джоном Хортоном Конуэем. Вот что оно собой представляет. Каждому из n участников игры на лоб приклеивается кружок с номером. Номера могут быть любыми неотрицательными целыми числами. Сумма всех этих чисел равна одному из k чисел (kn), выписанных на доске, среди которых нет двух одинаковых. Все участники игры по предположению обладают безграничной мощью интеллекта и отличаются абсолютной честностью. Каждый участник игры видит все номера, кроме своего, и все числа на доске.

Первого из участников игры спрашивают, может ли он назвать свой номер. Если он отвечает «нет», то тот же вопрос задают второму и так далее по кругу до тех пор, пока один из участников не ответит «да». Конуэй утверждает (хотя это кажется невероятным), что рано или поздно кто-то из участников непременно ответит «да».

Нелегкий выбор

Проезжая через небольшой городок по дороге в Лас-Вегас, Джон обнаружил в своей автомашине неисправность. Оставив машину в ремонтной мастерской, он решил пойти подстричься.

В городке было всего две парикмахерских. Одна из них принадлежала Биллу, другая Джо.

Заглянув через витрину в парикмахерскую Билла, Джон передернулся от отвращения.

Джон. Какая ужасная грязь! На зеркалах толстый слой пыли, на полу валяются волосы, владельцу парикмахерской не мешало бы побриться, да и подстрижен он кое-как.

Джон перешел на другую сторону улицы и решил попытать счастья у Джо.

Заглянув сквозь витрину в парикмахерскую Джо, Джон увидел иную картину.

Джон. Совсем другое дело! На зеркалах ни пылинки, пол чисто подметен, и сам Джо аккуратно подстрижен.

Но в парикмахерскую Джо наш Джон так и не зашел. Он предпочел подстричься в грязной парикмахерской у Билла. Почему?

Кому отдать предпочтение?

Ни один парикмахер не стрижет сам себя. Поскольку в городке, где вынужден был остановиться Джон, всего 2 парикмахерских, то каждый из парикмахеров вынужден стричься у своего конкурента. Джон мудро рассудил, что ему лучше подстричься у парикмахера-грязнули, потому что именно он так аккуратно подстриг владельца парикмахерской, блиставшей чистотой и порядком.

А вот еще одна задача, очень близкая по духу предыдущей. Два горняка после долгого трудового дня в шахте поднялись на поверхность. У одного из них лицо было чистым, у другого запорошено угольной пылью. У выхода с шахтного двора горняки пожелали друг другу спокойной ночи. Горняк с чистым лицом прежде, чем отправиться домой, вытер лицо носовым платком. Горняк с лицом, запорошенным угольной пылью, отправился домой в таком виде, как был. Можете ли вы объяснить их не совсем обычное поведение?

В кресле у парикмахера

Парикмахера Билла вряд ли кто-нибудь мог назвать молчуном. Едва Джон уселся в кресло, как Билл принялся болтать без умолку.

Билл. Должно быть, вы не здешний, сэр? Люблю стричь нездешних!

Билл. По мне, так лучше подстричь двух нездешних, чем одного здешнего!

Джон. Почему?

Билл. Потому, что за две стрижки я заработаю вдвое больше, чем за одну стрижку!

Джон. Ловко вы меня поймали! Попробую расквитаться с вами. Дней 10 назад баскетбольная команда нашего колледжа выиграла встречу со счетом 76 : 40, хотя ни один баскетболист не забросил ни одного мяча.

Как вы это объясните?

Когда Билл, перебрав несколько вариантов ответа, признал себя побежденным, Джон все объяснил.