Естествознание. Базовый уровень. 11 класс — страница 12 из 76

В лабораторных условиях можно наблюдать поразительный пример движения масла, приводящего к спонтанной самоорганизации. Такой опыт можно провести даже на собственной кухне. Возьмите сковороду с плоским дном, налейте в неё немного масла, смешанного с каким-нибудь порошком для того, чтобы было заметно движение жидкости, и поставьте её на слабый огонь. Нижний слой масла будет разогреваться в первую очередь, возникнет разница температур между дном и поверхностью масла и движение масла от дна к поверхности. Охладившись на поверхности, остывшие участки масла будут опускаться вниз.


Рис. 25. Ячейки Бенара и схема их образования


Вначале это движение будет хаотичным. Но когда различие температур в глубоком и поверхностном слое достигнет определённого уровня, движение участков масла станет согласованным. Мы увидим, как на поверхности жидкости образуются правильные шестиугольные ячейки, в середине которых частицы порошка движутся вверх, а по краям, т. е. на местах соприкосновения этих ячеек, – вниз. Эти ячейки называются ячейками Бенара, по имени впервые описавшего их исследователя (рис. 25). С точки зрения термодинамики Больцмана вероятность такого упорядоченного состояния почти равна нулю. И всё же самоорганизация происходит!

В чём причина такого странного и даже невероятного явления? Проще ответить на этот вопрос, используя вместо традиционного для физики слова «причина» непринятое для этой науки понятие «цель». Тогда вопрос надо поставить так: зачем это происходит? Очевидно, что такое упорядоченное движение молекул обеспечивает более эффективную теплопередачу, так как молекулы не сталкиваются друг с другом, т. е. «не путаются друг у друга под ногами». Воспользуемся аналогией, предложенной Г. Хакеном, о котором мы ещё будем упоминать в дальнейшем (рис. 26). «Представим себе бассейн, в котором люди плавают из одного конца в другой. Если пловцов очень много, то они будут постоянно оказываться друг у друга на пути. Чтобы избежать подобной сутолоки в открытых бассейнах, переполненных желающими искупаться в жаркий день, некоторые смотрители запускают пловцов по кругу, так что они теперь мешают друг другу гораздо меньше. Коллективное движение по кругу «предписано» пловцам смотрителем бассейна, однако не исключено, что они и сами могли додуматься до чего-то подобного: сначала, возможно, в этом участвовали всего несколько человек, но со временем к ним присоединились бы и другие – те, кому эта идея понравилась бы и такой способ плавания оказался бы удобнее. Так, в конце концов, может возникнуть коллективное движение; поскольку это происходит при отсутствии внешнего организатора, можно говорить о самоорганизации. Пример с жидкостью показывает, что и Природа поступает точно так же».


Рис. 26. Бассейны с хаотично плавающими людьми (А) и людьми, плавающими по кругу (Б)


Каким же образом происходит самоорганизация движения молекул? Считается, что это происходит в результате того, что в хаотическом движении молекул могут случайно возникать «микроупорядоченности». Большая их часть оказывается бесполезной и быстро разрушается. Однако если движение случайно сложившейся группы молекул оказывается более выгодным, то к этой группе начинают присоединяться другие молекулы. Упорядоченный процесс разрастается и в конце концов захватывает всю систему.

Для того чтобы быть самоорганизующимися, физические структуры должны постоянно поглощать и выделять, т. е. пропускать через себя, большое количество энергии. Такие структуры называют диссипативными (от «диссипация» – рассеивание), потому что они поглощают и рассеивают энергию. В следующем параграфе мы рассмотрим устройство лазеров – одной из используемых в практике диссипативных систем.

Проверьте свои знания

1. Сравните изолированные и открытые системы. Какие из них более распространены в природе?

2. Приведите пример системы, через которую проходит поток вещества и энергии.

3. Дайте определение стационарного состояния открытой системы.

4. Чем отличается движение воды в горном потоке от её течения в равнинной реке?

5. Используя рисунок 25, объясните, как происходит образование ячеек Бенара.

6. Что такое диссипативные структуры?

Задания

Используя материал параграфа, организуйте и проведите работу по получению ячеек Бенара. Сфотографируйте или снимите на видео результат вашего эксперимента.

§ 14 Лазеры как неравновесные самоорганизующиеся системы

Хлынов указал на светящуюся прямую, как игла, нить. Она шла сверху от развалин по направлению заводов Анилиновой компании. Путь её обозначался вспыхивающими листочками, горящими клубками птиц. Теперь она светилась ярко, – большой отрезок её перерезывал чёрную стену сосен.

– Она опускается! – крикнул Вольф. И не окончил. Оба поняли, что это была за нить. В оцепенении они могли следить только за её направлением. Первый удар луча пришёлся по заводской трубе, – она заколебалась, надломилась посредине и упала. Но это было очень далеко, и звук падения не был слышен.

Почти сейчас же влево от трубы поднялся столб пара над крышей длинного здания, порозовел, перемешался с чёрным дымом. Ещё левее стоял пятиэтажный корпус. Внезапно все окна его погасли. Сверху вниз, по всему фасаду, побежал огненный зигзаг, ещё и ещё… Хлынов закричал, как заяц… Здание осело, рухнуло, его костяк закутался облаками дыма.

А. Н. Толстой. Гиперболоид инженера Гарина

Принцип работы лазера

Типичным примером системы, поглощающей и рассеивающей большое количество энергии и способной в результате этого к самоорганизации, служат лазеры – устройства, широко используемые в самых различных областях человеческой деятельности. Само слово «лазер» образовано в результате сокращения его английского названия light amplification by stimulated emission of radiation – усиление света посредством вынужденного излучения. Другое название лазера – оптический квантовый генератор. Рассмотрим в общих чертах принцип его устройства. Для этого вспомним, что говорилось ранее о природе света. Квант света (фотон) испускается атомом в том случае, когда электрон переходит с верхней орбиты, обладающей высокой энергией, на нижнюю, энергия которой меньше. От разницы между энергиями верхней и нижней орбит зависит энергия фотона, которая проявляется в частоте излучения. Если систему «накачивать» электрической, химической или какой-либо другой энергией, электроны в атомах будут переходить на более высокие орбиты, а затем, спускаясь обратно, излучать кванты света.

В лазерах используют расположенные друг против друга зеркала, которые заставляют свет двигаться строго вдоль оси трубки. Световые волны принуждают возбуждённые атомы к монохроматическому излучению (от греч. «моно» – один и «хрома» – цвет).

Лазерное излучение обладает ещё одной важной особенностью. Посмотрим на рисунок (рис. 27). Все лучи света, направление которых не перпендикулярно плоскости зеркал, довольно быстро покидают активную среду лазера. Поэтому синхронизованное излучение испускается только в одном направлении в виде тонкого луча, в котором сконцентрирована вся световая энергия, генерируемая лазером. Понятно, что мощность такого излучения огромна. Некоторые лазеры испускают энергию не непрерывно, а в виде чрезвычайно коротких импульсов, длительность которых может быть меньше, чем 10-15 с, т. е. миллионной миллиардной доли секунды.


Рис. 27. Схема устройства и работы лазера


Сосредоточение всей энергии в таком коротком импульсе многократно увеличивает его мощность.

Работу лазера можно пояснить с помощью такой аналогии. Представьте себе большой зал, заполненный людьми, некое подобие дискотеки, только без музыки. Присутствующие пришли потанцевать, но так как никакой внешний ритм не задаётся, то каждый топает и подпрыгивает, как ему вздумается. Вдруг несколько человек, находящихся в разных концах зала, находят удачный, как им кажется, ритм и начинают поддерживать его с помощью ног или голоса. Ближайшие соседи этот ритм подхватывают, и образуется несколько групп, танцующих каждая в своём ритме. Но раздающиеся одновременно ритмы сбивают, и вот уже какая-то группа меняет свой ритм на ритм соседей. Он становится более мощным, чем остальные, и постепенно все присутствующие вовлекаются в этот ритм, и он один начинает греметь и господствовать по всему залу.

Применение лазеров

Мощное монохроматическое излучение лазера открывает широчайшие перспективы для своего использования в науке, промышленности, бытовой технике, медицине и других сферах человеческой деятельности. С помощью лазерного луча можно, например, точно измерить расстояние между двумя объектами. Приборы для измерения таких расстояний называют лазерными дальномерами. Они посылают короткие лазерные импульсы в сторону интересующего нас объекта. Дойдя до него, излучение отражается и возвращается назад. Измеряя время, которое затрачивает луч на путь до отражателя и обратно, и зная точное значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом. Таким способом было определено точное расстояние от Земли до Луны. Во время полётов на Луну на её поверхности были установлены специальные отражатели. С Земли при помощи телескопа посылали сфокусированный лазерный луч и измеряли время, которое он затрачивает на путь до лунной поверхности и обратно. Благодаря такому исследованию параметры орбиты Луны стали известны с точностью до нескольких сантиметров.

С самого начала создания лазеров возникла мысль о возможности их применения в военных целях. Помимо собственно поражающего действия лазера, его можно использовать для точного наведения оружия на цель. Если маленький лазер прикрепить к стволу пистолета или винтовки, его луч высветит крохотное пятнышко на цели. Стрелок видит это пятнышко и понимает, куда именно направлен его ствол. Иногда лазерный луч используют для того, чтобы ввести противника в заблуждение. Луч, нацеленный на танк или самолёт, создаёт у противника впечатление, что на него направлено высокоточное оружие, и заставляет его отступить.