В метафазе I гомологичные хромосомы попарно в виде тетрад располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.
В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом – число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.
В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК. Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.
В профазе II разрушается ядерная оболочка. В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся; хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.
В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуются четыре гаплоидные– клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.
Рис. 72. Фазы мейоза
При сперматогенезе на стадии созревания в результате мейоза образуются четыре одинаковые клетки – предшественницы сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.
Мейотические деления в овогенезе характеризуются рядом особенностей. Во-первых, профаза I завершается ещё в эмбриональном периоде, а остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в яичниках женщины продолжает развитие одна из остановившихся в своём делении клеток. В результате первого деления мейоза образуется крупная клетка – предшественница яйцеклетки и маленькое, так называемое полярное тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается – образуются зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.
Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.
1. Докажите, что размножение – одно из важнейших свойств живой природы.
2. Какие основные способы размножения вам известны?
3. Что такое бесполое размножение? Какой процесс лежит в его основе?
4. Перечислите формы бесполого размножения; приведите примеры.
5. Возможно ли появление генетически разнородного потомства при бесполом размножении? Свой ответ обоснуйте.
6. Сравните половое и бесполое размножение. В чём преимущества и недостатки того и другого способа размножения?
7. Сформулируйте определение понятия «половое размножение».
8. Какие периоды выделяют в процессе развития половых клеток? Сравните, как протекает период созревания (мейоз) в процессе сперматогенеза и овогенеза.
1. Вспомните из материала предыдущих курсов биологии, встречается ли фрагментация в растительном царстве. Если да, то приведите примеры подобного способа размножения.
2. У некоторых простейших (малярийный плазмодий) встречается особый тип размножения – так называемая шизогония. Ядро материнской особи делится несколько раз подряд без деления цитоплазмы, а затем образовавшаяся многоядерная клетка распадается на множество одноядерных клеток. К какому типу размножения относится шизогония? Докажите своё мнение.
3. Приведите примеры гермафродитных организмов. Среди каких организмов распространён гермафродитизм? Выскажите предположение, с чем это связано.
4. Выберите критерии для сравнения, составьте и заполните в тетради таблицу «Митоз и мейоз: сходство и различия».
1. Докажите, что знания и умения, полученные при изучении этой главы, пригодятся вам в будущем.
2. Какой материал данной главы представляет наибольшую важность для специалиста в области микробиологии; вирусологии; цитологии; молекулярной биологии? Может ли в современной науке специалист-вирусолог не знать, например, особенностей строения бактериальной клетки? Докажите, что базовые знания о процессах, происходящих на молекулярном и клеточном уровнях организации живого, необходимы не только биологу, но и специалистам в других областях естественных наук.
Строение и деятельность живых систем. Организмы
§ 27 Система живой природы. Грибы
Под берёзой, под берёзой
Подберёзовика нет.
Под осиной, под осиной
Подосиновик один.
На полянке три поганки,
На опушке три волнушки…
Попадись ты мне, груздь,
Разгони мою грусть!..
Да, видать, не судьба —
Не попалось ни гриба…
Мир живых организмов невероятно разнообразен. Сюда относятся амёба и бабочка, акула и удав, берёза и подберёзовик, слон и даже человек. Столь же необъятны знания о жизнедеятельности и строении всего живого, накопленные человечеством за века натуралистических и научных исследований. В настоящее время известно и описано более 40 тыс. видов грибов, 100–350 тыс. видов растений и несколько миллионов видов животных. При этом каждый год открывают новые виды, среди которых есть как ныне живущие, так и вымершие. Для того чтобы разобраться в этом бесконечном многообразии, существует раздел науки, называемый систематикой.
Первым исследователем природы, попытавшимся привести в систему все природные объекты, был, как мы знаем, Аристотель. Он создал «лестницу существ», или «лестницу природы», в которой каждый природный объект находился на своей ступени (рис. 73). Снизу располагались минералы, затем растения, животные и, наконец, человек. Таким образом, неживые объекты также включались в систему Аристотеля.
В основе классификации живых организмов Аристотеля и его последователей лежит понятие вида. Главным критерием вида учёные считали способность самца и самки одного вида производить плодовитое потомство.
Первым исследователем, создавшим развёрнутую единую классификацию растительного и животного мира, был выдающийся шведский естествоиспытатель и врач Карл Линней (1707–1778) (рис. 74). Разработав короткие и чёткие определения признаков, учёный описал около 10 тыс. видов растений и более 4 тыс. видов животных. В возрасте 28 лет К. Линней опубликовал свою самую известную работу «Система природы», в которой описал основные принципы систематики – науки о классификации живых организмов. В основу своей классификации он положил принцип иерархичности (соподчинённости) таксонов (от греч. «таксис» – расположение в порядке), когда несколько мелких таксонов (видов) объединяются в более крупный род, роды объединяются в отряды и т. д. (рис. 75).
Рис. 73. «Лестница существ» Аристотеля
Самой крупной единицей в системе Линнея был класс. С развитием биологии в систему таксонов были добавлены дополнительные категории, но принципы систематики, заложенные Линнеем, остались неизменными до нашего времени.
Рис. 74. К. Линней
Следует отметить, что систематика, предложенная Линнеем, была искусственной, поскольку не учитывала генетическое или эволюционное родство, о которых наука в то время не имела представления. Распределяя организмы по таксономическим группам, Линней учитывал ограниченное число признаков. Например, все животные были разделены на 6 классов по строению дыхательной и кровеносной систем: черви, насекомые, рыбы, гады, птицы и звери. Внутри классов Линней основывался на более мелких признаках, например, птиц он объединял по клюву, а зверей – по строению зубов. Основным признаком у растений Линней выбрал количество тычинок. Это привело к тому, что в одну группу попадали организмы, далеко отстоящие друг от друга по степени родства (см. рис. 75). Например, в один из 24 классов растений попали вместе сирень и ива, в другой – барбарис и тюльпан. Осознавая искусственность своей системы природы, Линней писал: «Искусственная система служит только до тех пор, пока не создана естественная».
Рис. 75. Систематика растений К. Линнея
Для обозначения видов учёный ввёл бинарную (двойную) номенклатуру названий растений и животных. В эпоху Великих географических открытий из самых различных уголков мира привозили множество новых видов животных и растений. Часто одним и тем же видам давали различные названия, так что невозможно было определить, о каком именно животном или растении идёт речь. Для того чтобы избежать этой путаницы, Линней предложил определять каждый вид в научной литературе с помощью двух латинских слов, первое из которых пишется с заглавной буквы и обозначает род, а второе, пишущееся со строчной буквы, – вид. После названия часто добавляют фамилию исследователя, впервые описавшего этот вид (фамилия Линнея обозначается одной буквой L.). Так, волка можно называть по-разному на разных языках, можно даже назвать серым разбойником, но в научной литературе он всегда будет Canis lupus, а принадлежащий к тому же роду шакал – Canis aureus. Существует широко известный род вороновых птиц. Все его представители имеют одинаковое родовое название Corvus, а различные принадлежащие к нему виды обладают, кроме того, своим видовым латинским названием: ворон – Corvus corax, серая ворона – Corvus cornix, а галка – Corvus monedula. Вы можете писать статью или книгу на своём родном языке, но после упоминания животного или растения обязаны вставить его латинское название, и тогда любой читатель или переводчик сможет вас понять.