Эта странная математика — страница 40 из 48

В 2007 году в рамках конкурса Big Number Duel[49] в непримиримом поединке за самое большое число сошлись двое философов, старых школьных приятелей – Агустин Райо (он же Мексиканский Множитель) из Массачусетского технологического института и Адам Элга (он же Доктор Зло) из Принстона. Победителем становился тот, кто даст определение самому колоссальному числу. Схватка, в которой обмен остротами и сложнейшая математическая, логическая и философская полемика сочетались с драматизмом боя за звание чемпиона мира по боксу, проходила в забитой до отказа аудитории центра “Стата” МТИ. Первый удар нанес Элга, начертав на доске единицу (видимо, в надежде, что его соперник не в форме). Райо незамедлительно парировал этот выпад, заполнив единицами всю доску. Элга тут же удалил часть линии у основания всех единиц, кроме первых двух, превратив их тем самым в знаки факториала. Так поединок продолжался, постепенно выходя за рамки знакомой математики, пока соперники не стали на ходу изобретать собственную нотацию для все больших чисел. Говорят, что в какой-то момент один из зрителей спросил Элгу: “А это число вообще можно вычислить?” На что тот после краткой паузы ответил: “Нет”. Наконец Райо отправил соперника в нокаут сокрушительным числом, описанным им как “наименьшее положительное число, большее любого конечного положительного числа, которое может быть выражено на языке теории множеств первого порядка с использованием не более чем гугола символов”. Мы не знаем, насколько велико число Райо, и, скорее всего, никогда не узнаем. Ни один компьютер никогда не сумеет его вычислить, даже если бы во Вселенной хватило места для гугола символов. Дело здесь не в нехватке места или времени: число Райо невычислимо, так же как неразрешима проблема остановки.


Афиша конкурса Big Number Duel, проходившего в Массачусетском технологическом институте.


На сегодняшний день, если говорить о более-менее осмысленных больших числах, число Райо – своего рода граница, отделяющая нас от неизвестного. Называли и бо́льшие числа, такие, например, как BIG FOOT, объявленное в 2014 году. Но чтобы получить хотя бы смутное представление о BIG FOOT, нам придется погрузиться в странную область под названием “вселенная куч” (oodleverse) и выучить язык теории куч первого порядка – а здесь не обойтись без ученой степени в области высшей математики и очень своеобразного чувства юмора. Да и в любом случае все самые большие на сегодня числа построены по тому же принципу, что и число Райо.

Чтобы еще глубже проникнуть в бескрайнее пространство чисел, гугологам нужно развивать существующие методики или разрабатывать новые, так же как освоение все более дальних просторов космоса требует новых прорывов, больших и малых, в двигателестроении. А пока охотникам за большими числами придется полагаться на те же приемы, что использовал Райо, только применять их уже к расширенной версии теории множеств первого порядка. Можно, например, добавить в нее аксиомы, которые позволят оперировать бесконечностями еще более грандиозного масштаба, а с их помощью уже генерировать новые рекордные конечные числа.

Если говорить начистоту, вся эта суета с описанием больших чисел ради рекордов не слишком волнует профессиональных математиков, так же как они не видят особого смысла в вычислении все большего и большего количества знаков числа пи. Гугология все же скорее хобби – этакий интеллектуальный мачизм, гонки NASCAR для специалистов по теории чисел. В то же время нельзя сказать, что пользы от нее никакой: она помогает нам осознать пределы нашей сегодняшней математической вселенной, подобно тому как наблюдение небесных тел с помощью самых мощных телескопов раздвигает границы физического космоса.

Заманчиво думать, что огромные числа вроде числа Райо дают нам возможность немножко приблизиться к бесконечности. Но на самом деле это не так. Бесконечные числа можно использовать для получения конечных, но конечное и бесконечность никогда не сольются. Правда в том, что, как бы мы ни старались, какие бы методики ни изобретали для описания все бо́льших и бо́льших чисел, мы ни на шаг не ближе к бесконечности, чем в детстве, когда умели считать только до трех.

Глава 12. Гну, тяну, кручу как хочу

…Первые геометрические открытия [ребенка] являются топологическими. …Если вы попросите его срисовать квадрат или треугольник, он нарисует замкнут[ую окружность][50].

Жан Пиаже

Топология – это как раз та математическая дисциплина, которая позволяет переходить от локального к глобальному[51].

Рене Том

В одной старой шутке говорится, что тополог – это человек, неспособный отличить кофейную чашку от бублика. Хотя точнее было бы сказать, что это человек, для которого различие между ними несущественно. В топологии чашка и бублик эквивалентны, поскольку (если предположить, что и то и другое сделано из пластичного материала вроде глины) из первого можно постепенной деформацией получить второе: ручка чашки превращается в отверстие бублика, а самой чашке можно придать форму кольца вокруг этого отверстия. Слово “отверстие” здесь имеет четко определенное значение. В топологии отверстие обязано иметь два конца и пронизывать предмет насквозь, как дырка у бублика, или, говоря по-научному, у тора. То, что мы в быту часто называем отверстием, – например, просверленное в стене углубление под шуруп – для тополога таковым не является, потому что оно не имеет двух входов и его можно постепенно деформировать так, чтобы оно полностью сгладилось. Если в двух словах, топология изучает такие свойства объектов, которые остаются неизменными, когда форма объекта меняется, но при этом сам он не разрезается и в нем не проделываются новые отверстия. Топология – современное расширение геометрии, порождающее множество парадоксальных выводов и дающее о себе знать в самых неожиданных местах.

В 2016 году Нобелевская премия по физике была присуждена британским ученым Данкану Холдейну, Майклу Костерлицу и Дэвиду Таулессу за работы в области так называемых экзотических состояний материи. При определенных условиях – например, при очень низких температурах – свойства материалов могут неожиданно и резко меняться. Однажды февральским утром 1980 года немецкий физик Клаус фон Клитцинг, проводя эксперименты с переохлажденными сверхтонкими образцами из кремния, помещенными в мощное магнитное поле, обратил внимание на очень странное явление. Кремний вдруг стал или проводить электричество пакетами определенной величины – сначала один, за ним другой, вдвое больше, потом еще один, втрое больше, и так далее, – или не проводить вообще. Никаких промежуточных значений, как это происходит с обычным электрическим током, не было. Это явление известно как квантовый эффект Холла, а Клитцингу за открытия в этой области в 1985 году была присуждена Нобелевская премия по физике. В процессе эксперимента кремний, очевидно, внезапно перешел в какое-то новое физическое состояние, в котором, как всегда бывает в таких случаях, произошла перегруппировка атомов. Но теоретики тщетно пытались объяснить, как подобная перегруппировка могла произойти в слое кремния настолько тонком, что для перемещения атомов внутри него вверх или вниз просто не было места. Костерлицу и Таулессу пришла в голову оригинальная идея. При охлаждении, предположили ученые, атомы кремния объединялись в завихряющиеся па́ры, которые при достижении критической температуры перехода спонтанно разделялись, образуя два миниатюрных вихря. Таулесс взялся произвести математические расчеты, объясняющие эти вихревые переходы, и обнаружил, что лучше всего явление формулируется в терминах топологии. Электроны в преобразующемся материале образуют так называемую топологическую квантовую жидкость: некое состояние, в котором они передвигаются совместно только на целое число шагов. Работая независимо от Таулесса, Холдейн обнаружил, что эти жидкости могут спонтанно появляться в сверхтонких слоях полупроводников даже в отсутствие сильных магнитных полей.

После объявления в Стокгольме лауреатов Нобелевской премии 2016 года один из членов Нобелевского комитета поднялся со своего места и достал из бумажного пакета булочку с корицей, бублик и (шведский) крендель. Между ними, отметил он, есть множество различий: разный вкус, например, – что-то соленое, что-то сладкое, – да и внешне они не похожи. Но для тополога из всех различий имеет значение только одно – количество отверстий: ноль в булочке, одно в бублике и два в кренделе. Лауреаты премии, объяснил он, нашли способ связать внезапный переход в экзотические физические состояния с изменениями в топологии, то есть фактически с “дырковатостью” соответствующих абстрактных структур. Своим открытием они указали путь к новой, чрезвычайно важной сфере применения дисциплины, породившей некоторые из самых невероятных результатов в математике.

Возьмите две копии одной картинки. Одну из них разгладьте на столе, а вторую хорошенько помните (не разрывая) и положите сверху. Неоспоримый факт: как минимум одна точка изображения на мятой копии окажется непосредственно над соответствующей точкой на разглаженном листе. (Строго говоря, расчеты, объясняющие этот феномен, оперируют непрерывными величинами, а материя реального мира имеет зернистую природу, поскольку состоит из атомов и прочего, – и тем не менее получающийся результат служит весьма неплохим приближением.) Тот же эффект наблюдается и с трехмерными объектами: сколько бы вы ни мешали воду в стакане, как минимум одна из молекул после перемешивания окажется на том же месте, что и до него. Первым математиком, опубликовавшим доказательство этого феномена в начале XX века, был голландец Лёйтзен Брауэр, поэтому соответствующая теорема получила название “теорема Брауэра о неподвижной точке”.