Эта странная математика — страница 43 из 48

Гипотезу впервые выдвинул в 1900 году Анри Пуанкаре, один из основателей топологии как точной научной дисциплины. Многие почитают его как “последнего универсала” – эксперта во всех областях математики своего времени[54]. Пуанкаре разработал методику под названием “гомологии”, которая представляет собой, упрощенно говоря, способ определять и относить к той или иной категории отверстия в многообразиях. Здесь все не так очевидно, как может показаться, поскольку математические отверстия – штуки довольно хитрые, их не так просто заметить и сосчитать, как, скажем, дырки в кренделе или в старом носке. Двумерное пространство в “Астероидах”, например, топологически эквивалентно тору, хотя у тора есть совершенно очевидная дырка, а в пространстве “Астероидов” ее как-то не заметно. Нельзя забывать, что математические отверстия – это абстрактные понятия, которые бывает труднее себе представить, чем, допустим, дырку в бублике; а кроме того, они еще окружены “петлями” – так что гомологии можно определить и как способ анализа различных типов петель в многообразиях.

Исходное предположение Пуанкаре заключалось в том, что гомологий достаточно, чтобы определить, является ли то или иное трехмерное многообразие топологически эквивалентным трехмерной сфере. Но уже через несколько лет он сам опроверг эту гипотезу, построив контрпример: гомологическую сферу Пуанкаре, которая истинной трехмерной сферой не является, но имеет те же гомологии. После дальнейших исследований он сформулировал свою гипотезу в новом виде. Если говорить простым языком, она гласит, что любое конечное трехмерное пространство, не имеющее отверстий, может быть непрерывно деформировано в трехмерную сферу. Несмотря на все усилия математиков, в XX веке эта гипотеза так и осталась недоказанной. Ее значение было столь велико, что в 2000 году Математический институт Клэя включил ее в список семи важнейших проблем, за решение которых объявил вознаграждение в миллион долларов США. Три года спустя справедливость гипотезы Пуанкаре доказал российский математик Григорий Перельман в ходе доказательства другой близкой проблемы – гипотезы геометризации Тёрстона.

В 2006 году Перельману была присуждена Филдсовская премия, которую считают самой престижной наградой в математике и часто приравнивают по статусу к Нобелевской. Затем, в 2010 году, было объявлено, что его работа отвечает критериям для вручения 1 000 000 долларов от Математического института Клэя. Однако Перельман от обеих наград отказался, по всей видимости, по соображениям этического порядка. Во-первых, по его мнению, они не отражали важный вклад, который внесли в решение проблемы другие ученые, в первую очередь американский математик Ричард Гамильтон, чью работу Перельман развил и продолжил. Кроме того, он был недоволен неэтичным поведением некоторых исследователей, в особенности китайских математиков Чжу Сипина и Цао Хуайдуна, опубликовавших в 2006 году статью с результатами проверки доказательства Гамильтона – Перельмана, но при этом пытавшихся создать впечатление, что авторы доказательства – они сами. Позже они отозвали исходную статью, озаглавленную “Полное доказательство гипотез Пуанкаре и геометризации: приложение теории Гамильтона – Перельмана о потоках Риччи”, и опубликовали новый вариант, с более скромными формулировками. Но сделанного не вернуть: Перельман был глубоко разочарован как их поведением, так и отсутствием осуждения их действий со стороны других математиков. В интервью журналу The New Yorker в 2012 году он сказал: “Пока я был не на виду, у меня имелся выбор: либо поднять шумиху [по поводу нарушения этических норм], либо ничего не делать и позволить обращаться с собой как с послушной собачкой. Теперь, когда я стал настолько заметным, я не могу оставаться собачкой и молчать. Вот почему мне пришлось уйти”. Не совсем понятно, то ли Перельман навсегда ушел из математики, то ли работает себе спокойно над другими проблемами. Ясно одно: быть в центре внимания – не для него. “Меня не интересуют деньги и слава, – сказал он после присуждения ему награды Математического института Клэя. – Я не хочу находиться на всеобщем обозрении, как животное в зоопарке”. Так или иначе, решив наконец одну из самых важных и сложных задач топологии, он прочно занял свое место в истории.

Еще одна проблема, много лет не дававшая покоя топологам, – гипотеза триангуляции. И она тоже не так давно была разрешена – правда, в этом случае исходное предположение было опровергнуто. В ней, по сути, ставится вопрос: возможно ли любое геометрическое пространство разделить на более мелкие фрагменты? Гипотеза предполагает, что да. Сферу, например, можно без остатка разделить на треугольные “плитки”. Правильный икосаэдр, или многогранник с двадцатью гранями в форме правильных треугольников, – вот грубое приближение сферы, однако его можно бесконечно улучшать, увеличивая число граней и меняя форму треугольников. Точно так же “триангулируется”, то есть разбивается на треугольники, и тор. Трехмерное пространство можно “нарезать” на произвольное количество тетраэдров. Но возможно ли триангулировать геометрические объекты во всех пространствах более высокой размерности, разбивая их на имеющиеся там аналоги треугольника? В 2013 году румынскому математику, тогда профессору Калифорнийского университета в Лос-Анджелесе Чиприану Манолеску удалось доказать, что это невозможно. Манолеску, вундеркинд и единственный человек, кому удалось три раза подряд набрать максимальное количество баллов на Международной математической олимпиаде, впервые столкнулся с проблемой триангуляции, будучи аспирантом в Гарварде в начале 2000-х годов. В то время он не решился заняться “неприступной задачей”, но годы спустя понял, что та самая теория, о которой он писал в своей кандидатской диссертации (посвященной так называемым гомологиям Флоера), – ключ к решению проблемы. Воспользовавшись результатами своих более ранних исследований, он сумел доказать, что в размерностях 5 и выше существуют многообразия, для которых триангуляция невозможна, – опровергнув тем самым гипотезу триангуляции. Это очень серьезное достижение, учитывая, что с использованием иных методов анализ даже четырехмерного пространства на возможность триангуляции – задача чересчур сложная.

В начале 1980-х американский геометр Уильям Тёрстон, умерший в 2012 году, задумал проект, в рамках которого предполагалось описать все существующие трехмерные многообразия. Для двух измерений подобная задача уже решена. Вот двумерные многообразия: сфера, тор, двойной тор (крендель), тройной тор и так далее. К ним можно добавить неориентируемые поверхности, такие как бутылка Клейна и проективная плоскость (она получается, если соединить края двух лент Мёбиуса с одинаковой закруткой). Тёрстон применял метод, позволяющий представить многие из этих двумерных многообразий многоугольниками. Например, если взять квадрат и соединить его противоположные стороны, получится тор. С двойным тором уже сложнее, но Тёрстон победил и его. Он получил двойной тор, попарно соединив определенные стороны восьмиугольника, вложенного в гиперболическую плоскость. Такое вложение позволяет избежать проблемы, возникающей при попытке сделать то же с обычным евклидовым восьмиугольником. Иначе бы двойной тор имел точку, общую для всех вершин восьмиугольника, сумма углов которого равнялась бы 1080 градусам, а не 360, как требуется. В гиперболической геометрии – той, что имеет дело с седловидными поверхностями, или, точнее, поверхностями, в любой своей точке искривляющимися противоположным образом по сравнению со сферой, – восьмиугольники правильного размера могут иметь углы 45 градусов, что решает проблему.

Тёрстон попытался сделать для трех измерений нечто похожее. В двух измерениях существует три вида однородных геометрий: эллиптическая, евклидова и гиперболическая. Эллиптическую и евклидову можно легко вложить в пространство. Гиперболическую же вложить невозможно, именно поэтому она была открыта много позднее. В трехмерном пространстве у каждой из этих геометрий есть свой аналог, но кроме них в нем есть и другие – всего восемь. Так же как и в двух измерениях, самая сложная для понимания и работы – гиперболическая. В 2012 году Яну Аголу удалось составить перечень всех гиперболических многообразий (в то время только этот случай еще ждал своего разрешения). Некоторые из использованных им методов, на первый взгляд, не имеют никакого отношения к исходной задаче: скажем, он строил комплексы из кубов различных размеров и анализировал гиперплоскости, рассекающие эти кубы пополам. У подобных многообразий есть практическое применение: например, ряд космологов предполагает, что Вселенная в целом имеет эллиптическую геометрию и представляет собой конечное многообразие – додекаэдр, определенные грани которого отождествлены. Такое многообразие возможно классифицировать, используя методику Агола.

Разумеется, в топологии и сейчас есть множество нерешенных проблем, и, вероятно, так будет всегда – ведь чем больше мы расширяем границы познанного, тем яснее понимаем, как многого еще не знаем. Но топология сегодня – уже не та узкоспециализированная, абстрактная область знаний, какой она была больше ста лет назад. Она имеет уйму практических применений, в том числе в робототехнике, физике конденсированного состояния, квантовой теории поля. А идеи топологии используются почти во всех областях математики.

Глава 13. Господь Бог, Гёдель и поиск истины

Я понимаю слово “доказательство” не в том смысле, как его толкуют юристы, для которых два полудоказательства равны одному целому, а в том, как оно мыслится математику, для которого половина доказательства = 0, а доказательство требует исключения всяких сомнений.

Карл Фридрих Гаусс

Доказательство – это идол, во имя которого чистый математик истязает себя.

Артур Эддингтон, “Природа физического мира”