Эта странная математика — страница 46 из 48

В 1931 году, за несколько лет до отъезда Гёделя из Австрии и начала работы в Институте перспективных исследований в Принстоне, где он подружился с Альбертом Эйнштейном, им были опубликованы две сенсационные, шокирующие теоремы – первая и вторая теоремы о неполноте. Если в двух словах, первая из них гласит, что любая математическая система, достаточно сложная, чтобы включать в себя обычную – школьную – арифметику, не может быть одновременно и полной, и непротиворечивой. Полная система – это такая, в которой все, что в нее входит, можно доказать или опровергнуть. Непротиворечивая – значит не содержащая таких утверждений, которые могут быть одновременно и доказаны, и опровергнуты. Как гром среди ясного неба, теоремы Гёделя о неполноте показывали, что в любой математической системе (за исключением самых простых) всегда найдутся утверждения истинные, но недоказуемые. Теоремы о неполноте в каком-то смысле аналогичны принципу неопределенности в физике, поскольку также указывают на существование фундаментального предела познания. И, как и принцип неопределенности, они раздражают и подавляют нас, дразня тем, что реальность – в том числе чисто интеллектуальная – самим своим поведением препятствует полному познанию того, что мы пытаемся постичь разумом. Грубо говоря, они показывают, что истина сильнее доказательства – а это ненавистно, особенно для математика.

Работа Гёделя и его поразительные выводы стали возможны только после того, как математики и логики признали необходимость формализовать математические системы с помощью четко сформулированных наборов аксиом. Путь в этом направлении был указан еще в античные времена Евклидом. Но только во второй половине XIX века, с разработкой теории множеств и математической логики, процесс формализации приобрел необходимую строгость и появилась возможность распространить его на любую систему математики, какую только можно себе представить. Для арифметики, которую мы проходим в школе (что изучает числа натурального ряда: 0, 1, 2, 3, …), аксиоматическое основание разработал итальянец Джузеппе Пеано; оно до сих пор используется математиками почти без изменений. Некоторые из утверждений обычной арифметики, например “2 + 2 = 4”, кажутся настолько очевидными, что непонятно, зачем их вообще доказывать. И все же это необходимо. Тот факт, что они знакомы нам с детства, вовсе не означает, что их можно принимать как сами собой разумеющиеся. В арифметике Пеано утверждения вроде “2 + 2 = 4” доказать очень просто, для этого 2 и 4 представляются в более обобщенной форме – как SS0 и SSSS0 (где S означает successor – элемент, следующий за числом ряда). Несложно в ней и опровергнуть утверждения типа “2 + 2 = 5”. В то же время в ней, как и следовало ожидать, невозможно опровергнуть, что 2 + 2 = 4, или доказать, что 2 + 2 = 5. Но в арифметике Пеано было бы мало толку, если бы она справлялась только с такими простенькими задачками. Ее сила – в способности оперировать гораздо более сложными утверждениями об арифметике. Первоначально математики считали, что с ее помощью можно доказать или опровергнуть любое из подобных сложных утверждений без исключения и весь вопрос лишь в наличии достаточного времени. Гёдель же своей первой теоремой показал, что это не так.

В качестве примера он взял одно из утверждений об арифметике Пеано, которое невозможно было ни доказать, ни опровергнуть средствами самой этой арифметической системы. Он показал, что если это утверждение доказуемо, то оно ложно (а значит, может быть опровергнуто), а если оно может быть опровергнуто, то может быть и доказано. В любом из этих случаев арифметика Пеано, если она полна, оказывается противоречивой. Мы вправе попробовать пойти на уступки: хорошо, пусть система неполна, но ведь должен же быть способ доказать, что арифметика Пеано (или любая другая система) непротиворечива. Увы, вторая теорема Гёделя о неполноте разбивает и эту последнюю надежду, демонстрируя, что любое доказательство непротиворечивости системы (средствами самой этой системы) автоматически доказывает и обратное – что она противоречива. Не все математики, правда, убеждены, что в вопросе непротиворечивости за Гёделем последнее слово.

В 1900 году Гильберт включил доказательство непротиворечивости аксиом арифметики вторым пунктом в свой знаменитый список нерешенных (на тот момент) проблем. В 1931 году Гёдель своими теоремами, казалось бы, лишил математиков надежды, что эта проблема когда-нибудь будет решена. Но всего несколько лет спустя, в 1936-м, немецкий математик и логик Герхард Генцен, ассистент Гильберта в Гёттингенском университете в 1935–1939 годах, опубликовал статью, в которой доказал непротиворечивость арифметики Пеано – то есть пришел к заключению, вроде бы диаметрально противоположному выводу Гёделя. Однако, в отличие от Гёделя, Генцен не пытался доказать непротиворечивость системы Пеано средствами самой этой системы. Вместо этого он прибег к помощи ординалов с определенными свойствами, в частности одного очень большого ординала (c ним мы уже встречались в десятой главе), названного Кантором “эпсилон-ноль” (ε0). Это число настолько колоссально, что его невозможно описать средствами арифметики Пеано. Тем не менее, как обнаружил Генцен, его можно использовать для формулировки и доказательства утверждений, которые нельзя доказать в арифметике Пеано, – в том числе утверждения о непротиворечивости самой этой системы.

Методику Генцена можно расширить и применять для доказательства непротиворечивости многих других систем, при условии что удастся построить достаточно большой ординал. Более того, как выяснилось, всякая математическая система характеризуется определенной “силой”, числом, которое показывает, какие ординалы могут быть выражены в этой системе, а какие нет. Например, так называемый теоретико-доказательственный ординал арифметики Пеано равен ε0, то есть в ней можно выразить любой ординал, меньший эпсилон-нуля, но не сам эпсилон-ноль. У более объемных математических систем теоретико-доказательственный ординал больше. У системы ZFC он неизвестен. Зато благодаря Генцену известно, что систему ZFC можно усилить “аксиомами больших кардиналов” и описывать тогда с ее помощью кардинальные числа, намного превышающие все, что выразимо в ZFC, а это ведет к созданию еще более сильных систем с еще бо́льшим (но тоже неизвестным) теоретико-доказательственным ординалом.

Математики все еще расходятся во мнениях относительно второй проблемы Гильберта: возможно ли доказать, что арифметика непротиворечива? Одни разделяют вывод Гёделя и считают, что это невозможно в принципе, другие склоняются к точке зрения Генцена, предложившего частичное доказательство. Как бы то ни было, этот вопрос не затрагивает сути теорем Гёделя: что в рамках любой математической системы (такой, например, как арифметика Пеано или ZFC) возможно сформулировать неразрешимые утверждения. Можно, конечно, судить об истинности или ложности таких утверждений, используя средства другой системы (как это сделал Генцен, усилив простую арифметику ординалами), но мы все равно не будем знать, является ли эта другая система непротиворечивой. Нам остается только принять ее за таковую.

Прошло три десятка лет после публикации в начале 1930-х годов теорем о неполноте, а примеров неразрешимых утверждений у математиков было раз-два и обчелся, не считая слишком уж искусственных, вроде тех, что сам Гёдель использовал в своем доказательстве. А затем произошел настоящий прорыв, и причиной его стало предположение, тревожившее умы математиков с того самого момента, как его в 1873 году выдвинул Георг Кантор. Это предположение – континуум-гипотеза, с которой мы уже встречались в десятой главе. Она гласит, что число алеф-один (ﬡ1) – мощность множества всех счетных ординалов – равно также мощности множества всех действительных чисел; другими словами, что действительных чисел (или точек на линии) столько же, сколько счетных ординалов. Если континуум-гипотеза истинна, значит, не существует множества, которое по мощности занимало бы промежуточное положение между множествами целых чисел и действительных чисел. Сам Кантор не сумел доказать это предположение, хоть и бился над ним бо́льшую часть жизни, чем, возможно, и подорвал свое психическое здоровье. Гильберт придавал континуум-гипотезе такое большое значение, что поставил ее на первое место в своем списке двадцати трех важнейших проблем. Лишь в 1963 году благодаря работе американского математика Пола Коэна был прояснен – если не окончательно определен – статус континуум-гипотезы. Коэн доказал, что в рамках ZFC (а они не так уж тесны!), самой широко используемой аксиоматической системы в современной математике, континуум-гипотеза неразрешима. Он обнаружил, что возможно сконструировать два различных набора аксиом, каждый из которых будет включать в себя все аксиомы ZFC и обладать внутренней непротиворечивостью, таких, что в одном из них континуум-гипотеза будет истинна, а в другом – ложна. Проще говоря, средствами системы ZFC континуум-гипотезу можно как доказать, так и опровергнуть – все зависит от того, какие дополнительные правила мы применим. Если же использовать ZFC в чистом виде, без дополнительных аксиом, невозможно ни то ни другое.

Подобная неразрешимость обнаруживается, как мы уже видели, даже в гораздо более простой евклидовой математике. Многие из начальных теорем Евклида, в том числе все первые 28 утверждений его “Начал”, не опираются на пятый постулат – тот, согласно которому параллельные прямые никогда не встретятся. Эти теоремы принадлежат к системе, ставшей известной как “абсолютная геометрия”: основанной на том же наборе аксиом, что и евклидова геометрия, за исключением пятого постулата. В абсолютной геометрии теорема Пифагора неразрешима, поскольку в евклидовой геометрии она верна, тогда как в неевклидовой (например, гиперболической), основанной на тех же аксиомах, но без постулата о параллельности, – неверна. Аналогично существуют аксиомы, добавление которых к системе ZFC позволяет как опровергнуть континуум-гипотезу (скажем, аксиомы форсинга), так и доказать ее (например, аксиома внутренней модели). В общем, континуум-гипотеза доказуемо неразрешима существующими сегодня методами. Даже используя мощнейший, охватывающий всю математическую науку инструментарий современной теории множеств, разрешить ее невозможно. Однако математика продолжает развиваться и расширяться – и надежда, что новые методики, такие как использование аксиом больших кардиналов, позволят найти решение, все еще теплится.