Это база: Зачем нужна математика в повседневной жизни — страница 29 из 60

единиц по вертикали, она оказывается в точке (x + iy) + (a + ib). Если распространить эту идею на множество точек со списком значений для x и y, то все множество сдвинется на a единиц по горизонтали и на b единиц по вертикали в случае добавления фиксированного комплексного числа a + ib к каждой его точке. Более того, это жесткое движение: весь объект движется целиком, не меняя ни формы, ни размера.

Еще одним типом жесткого движения является вращение. Здесь объект опять же не меняет ни формы, ни размера, но изменяет ориентацию, поворачиваясь на некоторый угол вокруг центральной точки. Ключевое наблюдение здесь состоит в том, что умножение на i поворачивает точки на 90º вокруг центра в начале координат. Именно поэтому ось y, представляющая мнимую часть y числа z, расположена под прямым углом к оси x, которая представляет действительную часть x. (Несмотря на название, мнимая часть – это действительное число: она становится мнимой, когда мы умножаем ее на i, чтобы получить iy.)

Если мы хотим повернуть множество точек на 90°, то умножаем каждую точку этого множества на i. В более общем случае если мы хотим повернуть множество точек на угол A, то небольшое упражнение в тригонометрии покажет, что нужно умножить все точки множества на комплексное число

cos A + i sin A.

Параллельный перенос (слева) и поворот (справа) множества точек PIG с использованием комплексных чисел


Эйлер нашел замечательную и красивую связь между этим выражением и комплексным аналогом экспоненциальной функции ex, где e = 2,71828… – основание натурального логарифма. Мы можем определить экспоненциальную функцию ez комплексного числа z таким образом, чтобы она обладала теми же базовыми свойствами, что действительная экспонента, и совпадала с ней при действительном z. Оказывается, что

eiA = cos A + i sin A.

Элегантный способ понять, почему это происходит, состоит в использовании дифференциальных уравнений. Я поместил его в Примечания{50}, потому что выглядит все это слишком формально.

Представление комплексного числа в полярных координатах выглядит следующим образом:

r(cos A + i sin A) = reiA.

Получилась очень простая и компактная формула.

Красота геометрии комплексных чисел заключается в том, что они имеют сразу две естественные координатные системы – декартову и полярную. Параллельный перенос в декартовых координатах описывается простой формулой, но в полярных координатах порождает путаницу. Поворот, напротив, в полярных координатах описывается простой формулой, зато в декартовых порождает путаницу. Пользуясь комплексными числами, вы можете сами выбирать, какое их представление лучше всего отвечает вашим целям.

Эти геометрические свойства комплексной алгебры можно было бы использовать в двумерной компьютерной графике, но оказывается, что, поскольку геометрия на плоскости проста, а компьютеры легко просчитывают громоздкие формулы, большой выгоды вы от этого не получите. В главе 7 мы увидим, что в случае компьютерной графики в трех измерениях аналогичный фокус творит чудеса. Однако пока мы завершим историю комплексных чисел рассказом о некоторых по-настоящему полезных сферах их применения.

* * *

Математики постепенно пришли к пониманию, что, несмотря на отсутствие очевидной физической интерпретации, комплексные числа часто оказываются проще, чем действительные, и проливают свет на такие свойства действительных чисел, которые в противном случае вызывают недоумение. Например, как заметили Кардано и Бомбелли, квадратные уравнения имеют либо два действительных корня, либо ни одного, а кубические уравнения – либо одно действительное решение, либо три. С комплексными решениями все намного проще: квадратные уравнения всегда имеют два комплексных решения, а кубические – всегда три. Можно, кстати говоря, продолжить: уравнения 10-й степени имеют 10 комплексных решений, а вот действительных решений у них может быть 10, 8, 6, 4, 2 или ни одного. В 1799 году Гаусс доказал давно подозреваемый факт, гипотезу о котором выдвинул Петр Рот еще в 1608 году и который получил известность как основная теорема алгебры: полиномиальное уравнение степени n имеет n комплексных корней. Все стандартные функции анализа, такие как экспонента, синус, косинус и т. п., имеют естественные комплексные аналоги, и при рассмотрении этих функций в комплексном варианте их свойства, как правило, становятся проще.

Одним из практических следствий этого стало превращение комплексных чисел в стандартные инструменты в электронике, в первую очередь потому, что они обеспечивают элегантный и простой способ работы с переменными токами. Электричество – это поток электронов, заряженных элементарных частиц. В постоянном токе, который дает, например, батарейка, электроны движутся в одном направлении. В переменном токе, который безопаснее и потому широко используется в электрических сетях, электроны снуют попеременно туда и сюда. График напряжения (и тока) в такой сети выглядит как кривая косинуса в тригонометрии.

Получить такую кривую можно, если последить за точкой на ободе вращающегося колеса. Предположим, для простоты, что радиус этого колеса равен 1. Если посмотреть на горизонтальную проекцию траектории нашей точки, то окажется, что она движется из стороны в сторону, достигая значений +1 и –1 в крайних положениях. Если колесо вращается с постоянной скоростью, то график горизонтального отклонения представляет собой кривую косинуса, а график вертикального отклонения – кривую синуса (кривые на рисунке, проведенные черными линиями).


Вращение на комплексной плоскости в проекции дает периодические колебания. Прибавление B к углу A сдвигает графики влево: это так называемый фазовый сдвиг


Положение движущейся точки характеризуется парой действительных чисел (cos A, sin A), где A – угол между направлением на точку и горизонтальной осью. Воспользовавшись приемом Гамильтона, можно представить эту пару как комплексное число cos A + i sin A. С изменением угла A это число движется оборот за оборотом вдоль единичной окружности на комплексной плоскости. Если мы измеряем углы в радианах, то полный оборот точка совершает при увеличении A от 0 до 2π. Следующий оборот происходит, когда A возрастает от 2π до 4π, и т. д., так что движение точки носит периодический характер с периодом 2π.

Формула Эйлера подразумевает, что, по мере того как значение A, возрастая, проходит по действительным числам, соответствующее ему значение eiA совершает оборот за оборотом вдоль единичной окружности с постоянной скоростью. Эта связь дает нам возможность превратить любое утверждение о периодической функции, имеющей форму синуса или косинуса, в комплексную экспоненту. Математически экспонента проще и легче поддается обработке. Более того, угол A имеет естественную физическую интерпретацию как фаза колебаний. Это означает, что изменение A путем прибавления к нему постоянного угла B сдвигает кривые синуса и косинуса на соответствующую величину (серые кривые на рисунке).

Что еще лучше, основные дифференциальные уравнения для напряжений и токов в контурах распространяются на множество комплексных чисел в неизменном виде. Физические колебания становятся действительной частью комплексной экспоненты, причем одни и те же методы применимы как к переменному, так и к постоянному току. Как будто вполне реальное (действительное) поведение имеет тайного мнимого двойника, и вместе они становятся проще, чем по отдельности. Инженеры-электронщики постоянно пользуются этим математическим приемом для упрощения расчетов, даже при наличии компьютера.

* * *

В электронике комплексные числа выскакивают как математический кролик из шляпы фокусника и облегчают инженерам жизнь – ну просто так получается. Но есть одна замечательная область, в контексте которой комплексные числа абсолютно необходимы и имеют физический смысл. Это квантовая механика.

Вигнер сделал этот образчик непостижимой эффективности центральным в своей лекции:

Не следует забывать, что гильбертово пространство квантовой механики – это комплексное гильбертово пространство… Для неподготовленного ума понятие комплексного числа далеко не естественно, не просто и никак не следует из физических наблюдений. Тем не менее использование комплексных чисел в квантовой механике не является вычислительным трюком прикладной математики, а становится почти необходимым при формулировке законов.

Кроме того, он постарался особо подчеркнуть, что подразумевается под «непостижимым»:

Ничто в имеющемся у нас опыте не наводит на мысль о введении этих величин. Если же мы спросим у математика о причинах его интереса к комплексным числам, то он с негодованием укажет на многочисленные изящные теоремы в теории уравнений, степенных рядов и аналитических функций в целом, обязанных своим появлением на свет введению комплексных чисел… Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем… два других чуда – существование законов природы и человеческого разума, способного постичь их.

Квантовая механика возникла около 1900 года для объяснения странного поведения веществ в микромире, которое тогда вдруг начали обнаруживать физики-экспериментаторы, и очень быстро превратилась в самую успешную физическую теорию, когда-либо придуманную человечеством. Там – на уровне молекул, атомов и, особенно, элементарных частиц, из которых складываются атомы, – вещество ведет себя удивительно и загадочно. Настолько удивительно и загадочно, что совершенно неясно, применимо ли ко всему этому слово «вещество». Волны, такие как свет, иногда ведут себя как частицы, фотоны. Частицы, такие как электроны, иногда ведут себя как волны.