Это база: Зачем нужна математика в повседневной жизни — страница 38 из 60

1 → –2 → 1 → –2 → …,

где раз за разом повторяются одни и те же два числа. Это «периодическая» динамика, примерно как смена времен года. При заданном начальном состоянии будущее поведение системы полностью предсказуемо: состояния 1 и –2 просто сменяют друг друга.

Если правило звучит как «возвести в квадрат и вычесть 4», мы получаем

1 → –3 → 5 → 21 → 437 → …,

и дальше числа все возрастают и возрастают (уменьшение происходит только на первом шаге). Последовательность по-прежнему предсказуема: достаточно просто вовремя применять правило. Поскольку оно носит детерминистский характер – в нем нет случайных величин, – каждая последующая величина однозначно определяется предыдущей, так что все будущее полностью предсказуемо.

То же относится и к непрерывным версиям, хотя в этом случае предсказуемость не так очевидна. Такая последовательность чисел называется временны́м рядом.

Вдохновляясь примерами Галилео Галилея и Ньютона, математики и физики открыли бесчисленное количество правил подобного рода, таких как галилеево правило для положения тела, падающего под действием силы тяжести, и ньютонов закон всемирного тяготения. Этот процесс привел к всеобщей вере в то, что любая механическая система подчиняется детерминистским правилам и, соответственно, предсказуема. Однако великий французский математик Анри Пуанкаре обнаружил в этих рассуждениях прореху, о чем и написал в 1890 году. Закон всемирного тяготения Ньютона подразумевает, что два небесных тела, например звезда и планета, движутся по эллиптическим орбитам вокруг общего центра масс, который в таком случае обычно располагается внутри звезды. Движение носит периодический характер, а периодом называется время, за которое система делает один оборот и возвращается в начальное положение. Пуанкаре задался вопросом, что происходит в случае, если тел три (Солнце, планета, Луна), и выяснил, что в некоторых случаях движение носит чрезвычайно нерегулярный характер. В дальнейшем математики, следуя за его открытием, поняли, что нерегулярность такого типа делает будущее системы непредсказуемым. Прореха в «доказательстве» предсказуемости заключается в том, что оно верно только в том случае, если вы можете измерить начальное состояние и провести все расчеты с идеальной точностью – с точностью до бесконечного числа десятичных знаков. Иначе даже крохотные расхождения могут вырасти экспоненциально и поглотить истинное значение.

Это и есть хаос или, правильнее сказать, детерминистский хаос. Даже если вы знаете правила и в них нет случайных составляющих, на практике будущее может оказаться непредсказуемым, даже если оно предсказуемо в теории. Мало того, поведение системы может оказаться настолько нерегулярным, что будет выглядеть как случайное. В истинно случайной системе текущее состояние не дает вообще никакой информации о следующем состоянии. В хаотической системе присутствуют тонкие закономерности. Тайные закономерности, стоящие за хаосом, носят геометрический характер и могут быть визуализированы путем построения решений модельных уравнений как кривых в пространстве, координатами которого являются переменные состояния. Иногда, если немного подождать, эти кривые начинают прорисовывать сложную геометрическую фигуру. Если кривые, выходящие из разных начальных точек, выписывают одну и ту же фигуру, мы называем эту фигуру аттрактором. Аттрактор характеризует скрытые закономерности в хаотическом поведении.


Слева: аттрактор Лоренца. Справа: реконструкция его топологии по одной переменной


В качестве стандартного примера обычно приводят уравнения Лоренца – динамическую систему с непрерывным временем, моделирующую конвекционный поток, например движение теплого воздуха в атмосфере. В этом уравнении три переменные. На рисунке, отражающем их изменения в трехмерной системе координат, все кривые решений в конечном итоге движутся вдоль фигуры, напоминающей маску, – это и есть аттрактор Лоренца. Хаос возникает потому, что, хотя кривые решений странствуют туда и сюда по этому аттрактору (ну хорошо, очень близко к нему), разные решения делают это очень по-разному. Одно может, например, шесть раз обойти вокруг левой петли, а затем семь раз вокруг правой; близлежащая кривая может восемь раз обойти левую петлю, затем трижды правую и т. д. Так что предсказанные варианты будущего этих кривых сильно различаются, хотя и начинаются они с очень похожих значений переменных.

Однако краткосрочные предсказания более надежны. Поначалу две близкие кривые остаются близкими, и только позже они начинают расходиться. Так что хаотическая система предсказуема в краткосрочной перспективе, в отличие от истинно случайной системы, которая вообще непредсказуема. Это одна из тех скрытых закономерностей, которые отличают детерминистский хаос от случайности.

При работе с конкретной математической моделью мы знаем все переменные и можем с помощью компьютера рассчитать, как они изменяются. Мы можем также визуализировать аттрактор, изобразив эти изменения в соответствующих координатах. Когда же мы наблюдаем реальную систему, которая может оказаться хаотической, такая роскошь доступна не всегда. В худшем случае удается измерить только одну из переменных. Поскольку остальные переменные неизвестны, мы не можем построить аттрактор.

Именно здесь в дело вступает догадка Лена. Математики придумали немало хитроумных методов «восстановления» аттрактора по измерениям одной-единственной переменной. Простейший из них – метод Паккарда – Такенса, или метод скользящего окна, разработанный Норманом Паккардом и Флорисом Такенсом. Этот метод вводит новые несуществующие переменные на основе измерений одной и той же переменной в разные моменты времени. Так что вместо оригинальных трех переменных, измеряемых синхронно, мы смотрим всего на одну переменную в окне длиной в три шага по времени. Затем мы сдвигаем окно вдоль оси времени на один шаг и повторяем эту операцию много раз. Правый рисунок показывает, как это работает для аттрактора Лоренца. Фигура на нем не совпадает с фигурой на левом рисунке, но, если вы не испортили дело, очень неудачно выбрав шаг по времени, то оба рисунка имеют одинаковую топологию: восстановленный аттрактор представляет собой непрерывно искаженный вариант реального. Здесь оба рисунка похожи на маски с двумя дырками для глаз, но один из них является перекрученной версией другого.

Этот метод дает качественную картину аттрактора, по которой можно судить, какого рода хаос нам ожидать. Так что Лен, задавшись вопросом о том, не сработает ли такой же прием с данными по пружинам, построил двумерный график, рассматривая последовательные промежутки между витками как временной ряд и применяя метод скользящего окна. Однако он получил не четкую геометрическую фигуру, похожую на маску, а всего лишь размытое облако точек. Это указывало на то, что последовательность промежутков, возможно, не является хаотической в формальном смысле, который используют математики.

Так что же, метод оказался бесполезным?

Вовсе нет.

Внимание Лена привлекла общая форма размытого облака. Образцы проволоки были тщательно проверены на навивочной машине, поэтому он заранее знал, какие из них годные, какие негодные, а какие так себе. Могло ли восстановленное облако точек сказать, что есть что? Судя по всему, да. Когда проволока была по-настоящему хорошей, легко навивалась и давала очень качественные пружины, облако получалось маленькое и приблизительно круглое. Когда проволока имела приемлемое качество и навивалась достаточно легко, но пружины давала с более значительным разбросом размеров, облако получалось крупнее, но по-прежнему приблизительно круглое. В случае некачественной проволоки, из которой невозможно было сделать пружину, облако получалось вытянутым, длинным и тонким, как сигара.

Если такая закономерность справедлива и для остальных образцов, то можно отказаться от требующих времени и дорогих испытаний на пружинонавивочной машине и судить о годности проволоки по форме и размеру размытого облака. Это решило бы практическую задачу поиска дешевого и эффективного теста для определения свиваемости. На самом деле неважно, является ли такой параметр, как промежутки между витками, случайным, хаотичным или в какой-то мере тем и другим. Не обязательно точно знать, как меняются свойства материала по длине проволоки или даже что это за свойства. Совершенно не обязательно проводить очень сложные расчеты упругости и подтверждать их не менее сложными экспериментами, чтобы понять, как изменчивость свойств влияет на свиваемость. Знать нужно лишь то, как различаются графики скользящего окна для годной и негодной проволоки, а это можно определить испытаниями на большом количестве образцов проволоки и сравнением с тем, как они ведут себя на пружинонавивочной машине.

Теперь стало ясно, почему такие стандартные статистические характеристики данных, как средняя величина и дисперсия (разброс), бесполезны. Они не учитывают порядок получения данных: как каждое следующее расстояние соотносится с предыдущим. Если перемешать числа, их среднее значение и дисперсия не изменятся, но форма облака точек может измениться кардинально. Здесь, скорее всего, и кроется ключ к производству качественных пружин.

Чтобы проверить эту догадку, мы построили машину контроля качества FRACMAT, которая наматывала тестовую пружинку на круглый металлический стержень, сканировала ее при помощи лазерного микрометра, чтобы измерить последовательные промежутки, передавала эти данные в компьютер, применяла к ним метод скользящего окна для восстановления аттрактора, получала облако точек, оценивала описывающий его эллипс, проверяя, какой он формы – округлый или сигарообразный – и велик ли он, и устанавливала, годным или негодным является образец. Это было практическое применение теории хаоса и метода восстановления аттрактора к задаче, которая формально даже не была хаотической. В полном соответствии с целью финансирования от Министерства торговли и промышленности, которое предназначалось не для исследований, а для распространения технологических достижений, мы перенесли метод восстановления аттрактора из математики хаотической динамики на временной ряд наблюдений вовсе не хаотической, а вполне реальной системы. Собственно, мы с самого начала говорили им, что собираемся сделать именно это.