пространствах: пространство действительных чисел и трехмерное пространство имеют конечную размерность, а размерность пространства всех непрерывных функций бесконечна. Функциональный анализ во всем похож на обычный математический анализ, но применяемый к пространству бесконечной размерности.
Еще одна крупная инновация того периода тоже аккуратно встала на свое место в этой картине: это новая, более общая и более гибкая теория интегрирования, предложенная Анри Лебегом под названием «теория меры». Мера – это величина вроде площади или объема, позволяющая присвоить число множеству точек в пространстве. Интересная особенность здесь в том, что это множество может быть чрезвычайно сложным, хотя некоторые множества настолько сложны, что даже концепция меры Лебега к ним неприменима.
Вариационное исчисление, тема диссертации Радона, буквально «кричит» об операторах, как только мы видим, что речь в нем идет о поиске функций (не чисел) с оптимальными свойствами. Так что для Радона отход от классического вариационного исчисления и погружение в функциональный анализ были вполне естественным шагом. Это привело его к большому успеху – несколько важных идей и теорем в теории меры и функциональном анализе названы в его честь.
Среди них преобразование Радона, на которое он наткнулся в 1917 году. С точки зрения функционального анализа оно – близкий математический родственник преобразования Фурье. Для начала берется изображение на плоскости, которое рассматривается как черно-белая картинка с областями, окрашенными в различные оттенки серого. Любой оттенок может быть представлен действительным числом от 0 (черный) до 1 (белый). Можно сжать изображение в линию в любом направлении, сложив при этом числа, представляющие темные и светлые области и получив проекцию изображения. Преобразование Радона охватывает все эти сжатые проекции во всех направлениях. По-настоящему важная идея – обратное преобразование, позволяющее восстановить первоначальное изображение по этим проекциям.
Насколько я могу судить, Радон изучал свое преобразование из чисто математических соображений. В его статье, посвященной преобразованию, не упоминается какое-либо его практическое применение. Ближе всего к реальной жизни подходит краткое упоминание о связи преобразования с математической физикой, а именно с теорией потенциала, где сходятся электричество, магнетизм и тяготение. Радона, кажется, куда больше интересовала математика и возможные обобщения. В более поздней работе он исследовал трехмерный аналог этого преобразования, в котором распределение светлых и темных областей в пространстве сжимается до плоскости во всех возможных направлениях, и нашел формулу восстановления для этой операции. Позже другие математики отыскали обобщения для более высоких размерностей. Радон мог ориентироваться на рентгеновские лучи, которые порождают именно такого рода проекции органов и костей в человеческом теле: «светлое» и «темное» здесь интерпретируются как разница в прозрачности для рентгеновских лучей. Но потребовалось целое столетие, чтобы его открытие нашло применение в устройствах, способность которых зондировать внутренности человека кажется почти чудесной.
Аппараты компьютерной томографии (КТ) используют рентгеновские лучи для создания трехмерных изображений внутренностей человека. Эти изображения хранятся в компьютере, ими можно манипулировать, чтобы показывать кости и мышцы или чтобы обнаруживать раковые опухоли. Широко используются и другие типы сканеров, например ультразвуковые. Но как сканер выясняет, что находится внутри нашего тела, не вскрывая его? Мы все знаем, что рентгеновские лучи легко проходят сквозь мягкие ткани, тогда как более плотные ткани, например кости, менее проницаемы для них. Но рентгеновское изображение, полученное с определенного направления, показывает только среднюю плотность тканей на пути луча. Как подобный снимок превратить в трехмерное изображение? Радон начинает свою статью с заявления о том, что ему удалось решить эту проблему:
При интегрировании функции двух переменных x, y – подчиняющейся подходящим условиям регулярности функции от точки f(P) на плоскости – вдоль произвольной прямой g, получаются интегральные значения F(g) – функция от прямой. В части A данной статьи решается задача поиска преобразования, обратного данному линейному функциональному преобразованию, и даются ответы на следующие вопросы: может ли каждая функция от прямой, удовлетворяющая подходящим условиям регулярности, рассматриваться как построенная таким образом? Если да, восстанавливается ли f единственным образом из F и как можно вычислить f?
Ответ – обратное преобразование Радона, то есть формула, восстанавливающая внутреннее распределение тканей (точнее говоря, степени их непроницаемости для рентгеновских лучей) по множеству проекций со всех направлений.
Чтобы понять, как это работает, для начала опишем, что можно увидеть на единственном скане (проекции) тела. Такой скан берется на одном двумерном срезе тела. На картинке схематически изображены параллельные рентгеновские лучи, проходящие через срез тела, содержащий несколько внутренних органов с разной степенью непроницаемости для рентгеновских лучей. Проходя сквозь эти органы, лучи меняют интенсивность. Чем более непроницаем орган, встретившийся на пути луча, тем ниже интенсивность луча на выходе. Мы можем построить график изменения наблюдаемой интенсивности в зависимости от положения луча.
Чем темнее область, тем менее она проницаема. Слева: сканирование единичного среза тела с одного направления дает график наблюдаемой непроницаемости для рентгеновских лучей только в этом направлении. Справа: другое распределение внутренних тканей дает тот же самый график
В результате одно изображение такого рода сжимает распределение серого внутри тела вдоль направления луча в точку. Технически мы получаем проекцию распределения в этом направлении. Понятно, что одна проекция такого рода не может сказать в точности, как расположены органы внутри тела. Например, если сдвинуть черный орган в направлении луча, проекция не изменится. Однако если сделать еще один скан, рассматривая тело в вертикальном направлении, то изменение положения черного кружочка будет заметно на графике непроницаемости. Интуитивно понятно, что можно получить еще больше информации о пространственном расположении органов и тканей, сделав серию сканов, слегка повернутых относительно друг друга. Но достаточно ли будет информации, чтобы определить положение всех значимых деталей в точности?
Превращение графика непроницаемости в серию полос, окрашенных в оттенки серого и выстроенных в направлении рентгеновского луча
Как доказал Радон, если имеются графики непроницаемости для случаев, когда срез тела рассматривается со всех возможных направлений, то можно определить двумерное черно-белое распределение тканей и органов в точности. Мало того, существует очень простой способ сделать это – обратная проекция. Он позволяет как бы размазать черно-белое распределение вдоль направления луча, причем размазать однородно. Так что мы получаем квадратную область, заполненную серыми полосками разных оттенков. Чем выше в данном месте график, тем темнее получается полоска. Мы интуитивно размазываем серый цвет вдоль полоски, поскольку не можем определить из одной проекции, где именно располагаются конкретные внутренние органы.
Мы можем проделать эту операцию для каждого направления оригинальной серии сканов. Обратная формула Радона говорит, что, если наклонить все эти полосатые картинки на соответствующий угол и наложить друг на друга, так чтобы в каждой точке оттенки серого сложились, то результат – надлежащим образом отмасштабированный – покажет первоначальное распределение внутренних органов. На следующем рисунке видно, как это работает, если первоначальное изображение – квадрат и мы восстанавливаем его при помощи обратной проекции с нескольких (от 5 до 100) направлений. Чем больше направлений, тем лучше результат.
Слева: квадрат. В середине: обратная проекция с пяти направлений. Справа: обратная проекция со 100 направлений[8]
Восстановив распределение тканей в одном срезе, мы сдвигаем тело вдоль оси прибора на небольшое расстояние и проделываем эту же операцию еще раз. И еще, и еще, пока не нарежем тело условными плоскостями на ломти, как батон внарезку. После этого можно собрать ломтики, сложить их в компьютере и получить полное описание трехмерного распределения тканей. Этот метод определения трехмерной структуры по серии двумерных срезов известен как томография и давно используется микроскопистами, поскольку позволяет заглянуть внутрь твердых объектов, таких как насекомые или растения. Объект при этом заливают воском, а затем отрезают от него тончайшие ломтики при помощи устройства, похожего на миниатюрную машинку для нарезки колбасы и называемого микротомом (от греческих слов micros – «маленький» + temnein – «резать»). КТ-сканеры используют эту же идею, разве что «нарезку» здесь производит не микротом, а рентгеновские лучи при помощи математических фокусов.
После этого остается только прибегнуть к рутинным математическим методам обработки трехмерных данных и получения всевозможной информации. Мы можем посмотреть, как выглядели бы ткани на сечении, взятом под совершенно другим углом, или показать только ткани определенного типа, или обозначить условными цветами мышцы, органы и кости. В общем, любые украшательства, на ваш вкус. Главные инструменты здесь – стандартные методы обработки изображений, опирающиеся в конечном итоге на трехмерную координатную геометрию.
На практике все далеко не так просто. Сканер, конечно, делает не бесконечное число снимков с непрерывного множества направлений, а просто большое конечное их число с бл