Математикоядные приближаются.
Обнаружив новый мир, они съедают всю его математику. Не идеи, а саму нематериальную субстанцию – и все, что когда-либо зависело от математики и опиралось на нее, исчезает тоже, лишенное опоры. Математикоядные предпочитают самую очищенную и переработанную пищу, так что начинают с продвинутой математики и постепенно съедают ее всю, до самых прозаических вещей. Обычно они уходят, когда добираются до умножения в столбик, потому что простейшая арифметика им не по вкусу, так что цивилизация на атакованных ими планетах не гибнет полностью. Остается, однако, лишь бледная тень прежнего величия, и Галактика буквально усеяна планетами, обитатели которых вынуждены вернуться в Темные века без надежды на спасение.
Если бы математикоядные появились в Солнечной системе завтра, что бы мы потеряли?
Скорее всего, исчезновения чистой математики на передовых рубежах мы бы просто не заметили. Хотя лет через 100 кое-что из этой категории приобрело бы жизненно важное значение, сейчас без всего этого можно обойтись. Но по мере того как математикоядные будут спускаться с башен из слоновой кости вниз, ближе к земле, у нас начнут пропадать важные вещи. Первыми в очереди стоят компьютеры, мобильные телефоны и интернет – самые математически сложные продукты на планете. Далее идет все, что связано с космосом: метеорологические, экологические и коммуникационные спутники, спутниковая навигация, в том числе авиационная и морская, спутниковое телевидение, отслеживание вспышек на Солнце. Перестанут работать электростанции. Промышленные роботы остановятся, производственные отрасли умрут, и мы вновь вернемся к веникам и швабрам вместо пылесосов. Никаких самолетов: без компьютеров мы уже не сможем их проектировать, а без аэродинамики не разберемся, как удержать их в воздухе. Радио и телевидение исчезнут в клубах инопланетного дыма, потому что эти технологии опираются на уравнения Максвелла для электромагнитного излучения – радиоволн. Все крупные здания рухнут, потому что их конструкции сильно зависят от компьютерных методов проектирования и теории упругости, которая должна обеспечить целостность конструкции. Никаких небоскребов, никаких крупных больниц и стадионов.
История течет назад. Мы уже вернулись к жизни, какой она была столетие назад, а математикоядные еще только начали.
Можно отметить, что некоторые потери пойдут нам только на пользу: ядерное оружие, например, и большинство других военных применений математики исчезнут, хотя при этом мы потеряем и способность защитить себя. Сам предмет нейтрален: хорош он или плох, зависит от того, что делает с ним человек.
Некоторые потери имеют двойственный характер: банки прекратят инвестиции в фондовый рынок, потому что потеряют способность предсказывать его поведение и минимизировать финансовые риски. Банкиры не любят риски, за исключением тех, о которых не знают до момента краха финансовой системы. Это снизит нашу разрушительную одержимость деньгами, но лишит финансирования многие полезные проекты.
В большинстве своем потери будут вредными. Для прогнозирования погоды придется, как встарь, облизывать палец и с его помощью определять направление ветра. Медицина лишится сканеров и способности моделировать распространение эпидемий, хотя сохранит анестетики и рентгеновские лучи. Все, что зависит от статистики, канет в Лету. Врачи больше не смогут оценивать безопасность и эффективность новых лекарств и методов лечения. Сельское хозяйство потеряет способность оценивать новые сорта растений и породы животных. Производство лишится эффективных методов контроля качества, поэтому все, что вы купите, – из ограниченного ассортимента, который останется доступным, – будет ненадежным. Правительства потеряют способность предсказывать тенденции и запросы. Они и сейчас-то справляются с этим так себе, но будет намного хуже. Средства связи вновь станут примитивными, исчезнет даже телеграф. Самым быстрым способом доставки письма вновь станет гонец на лошади.
К этому моменту мы уже не сможем обеспечивать жизнь существующего населения. Перестанут работать все наши хитроумные приемы, помогающие выращивать больше пищи и перевозить товары через океаны. Придется вернуться к парусным кораблям. Когда миллиарды людей начнут умирать от голода, нахлынут разные болезни. Наступит конец времен и Армагеддон, когда уцелевшие начнут драться за то немногое, что останется от нашего мира.
Вам может показаться, что мой сценарий – преувеличение. Однако единственное, что я действительно преувеличил, это представление математики в виде съедобной субстанции. Мы на самом деле полагаемся на математику почти во всем, что обеспечивает нашу жизнь на планете. Повседневная жизнь людей, которые считают математику бесполезной, в реальности зависит от деятельности тех, кто точно знает, что это не так, хотя огромное большинство об этом и не подозревает. Это, конечно, не их вина – ведь такая деятельность происходит за сценой, где никто, кроме специалистов, ее не видит.
Я не говорю «без математики мы по-прежнему жили бы в пещерах», поскольку убежден, что без математики мы нашли бы другие пути развития. Я не утверждаю, что одной только математикой объясняется наш прогресс. Математика наиболее полезна в сочетании со всем остальным, что человечество может применить для решения проблем и достижения целей. Но мы находимся в современном состоянии, потому что именно математика, наряду со всем остальным, помогла нам до него добраться. Мы так глубоко внедрили математику в свои технологические и социальные структуры, что без нее оказались бы в жуткой ситуации.
В главе 1 я перечислил шесть характерных черт математики: реальность, красота, общность, переносимость, единство и разнообразие. Все вместе они обусловливают полезность. Укладывается ли все это в единую картину теперь, когда вы прочли главы 1–13?
Многие математические идеи, о которых мы говорили, берут начало в реальном мире: числа, дифференциальные уравнения, задача коммивояжера, теория графов, преобразование Фурье, модель Изинга. Математика черпает вдохновение в природе, и это ей идет только на пользу.
Другие области интересующего нас предмета возникли в значительной степени благодаря чувству прекрасного, свойственному математикам-теоретикам. Комплексные числа были придуманы потому, что некрасиво, когда одни числа имеют два квадратных корня, а другие – ни одного. Модулярная арифметика, эллиптические кривые и другие части теории чисел появились, потому что людям нравятся красивые числовые закономерности, а преобразование Радона – потому что это интересный вопрос геометрии. Топология на протяжении столетия имела мало общего с реальностью, но стала одним из столпов математического здания, потому что речь в ней идет о непрерывности, а непрерывность фундаментальна.
Стремление все обобщать заметно в математике всюду. Эйлер не просто решил головоломку о мостах Кёнигсберга – он решил все без исключения головоломки этого типа и создал новую область математики, теорию графов. Шифры на основе модулярной арифметики привели к вопросам о вычислительной сложности и о том, действительно ли P ≠ NP. Комплексные числа вдохновили Гамильтона на создание кватернионов. Анализ был обобщен до функционального анализа, где пространствам конечной размерности на смену пришли функциональные пространства бесконечной размерности, а на смену функциям – функционалы и операторы. Математики придумали гильбертовы пространства квантовой теории задолго до того, как физики нашли для них применение. Топология началась с игрушек вроде ленты Мёбиуса, а затем во взрывном темпе переросла в одну из самых глубоких и абстрактных областей человеческой мысли. Теперь она начинает находить себе применение и в повседневной жизни.
Многие рассмотренные нами методы переносимы и используются в других местах независимо от того, где они в свое время появились. Теория графов применяется в медицинских задачах о пересадке почек, в задаче коммивояжера, в квантовых шифрах (расширяющие графы), в спутниковых навигаторах. Преобразование Фурье изначально было придумано для изучения тепловых потоков, но среди его родичей можно найти и преобразование Радона, используемое в медицинских сканерах, и дискретное родственное преобразование, необходимое для сжатия изображений в формате JPEG, и вейвлеты, которые ФБР использует для эффективного хранения отпечатков пальцев.
Тема единства математики тоже проходит красной нитью через все мои истории. Теория графов переходит в топологию. Комплексные числа появляются в задачах по теории чисел. Модулярная арифметика вдохновляет на построение групп гомологий. Спутниковая навигация соединяет в одной области применения по крайней мере пять частей математики, от псевдослучайных чисел до теории относительности. Динамика помогает вывести спутники на орбиту и предлагает новый метод контроля качества пружинной проволоки.
Разнообразие? В главах этой книги, если взять их вместе, фигурируют десятки областей математики, как правило, в сочетаниях. Их спектр простирается от числовых областей до геометрических, от иррациональных чисел до бутылок Клейна, от принципов справедливого дележа тортика до климатических моделей. Вероятности (цепи Маркова), графы и исследование операций (методы Монте-Карло) объединяются ради повышения шансов пациентов на получение почки для пересадки.
Что касается полезности, то спектр применений еще более разнообразен и охватывает сферы от компьютерной анимации до медицины, от производства пружин до фотографии, от интернет-торговли до прокладки авиамаршрутов, от мобильных телефонов до датчиков безопасности. Математика всюду. А я показал вам лишь крохотную часть того, что незаметно и без лишних слов управляет миром. Я понятия не имею о большей ее части. И вообще, многие лучшие идеи являются коммерческими секретами.
Именно поэтому в критических ситуациях нам нужно, чтобы как можно больше людей имели предельно широкие знания математики. Это необходимо не только для нашей собственной пользы. Понятно, что для большинства из нас значительная часть математики, которую нам преподают, практически бесполезна. Но так можно сказать и о любом другом школьном предмете. Я в школе изучал историю, и это определенно позволило мне лучше почувствовать культуру, в которой я живу, но одновременно напичкало меня пропагандой колониализма, которая сегодня кажется все более и более сомнительной. Но я не