Этюды о Галилее — страница 14 из 59

175. Впрочем, только такие опыты и можно провести с объектами галилеевской физики. Ведь эти объекты, тела, описываемые в его теории движения, – это не «реальные» тела. Нельзя, в самом деле, поместить «реальные» (в обычном смысле слова) тела в нереальное геометрическое пространство. Аристотель это прекрасно понимал. Но он не понимал, что можно мыслить их как абстрактные объекты, как настаивал на этом Платон или как это делал последователь Платона176Архимед. Однако сам Архимед не сумел наделить эти абстрактные объекты движением. Этот труд совершил его последователь – Галилей.

Таким образом, галилеевская теория движения относится только к абстрактным объектам, расположенным в геометрическом пространстве, собственно говоря, к объектам, которые рассматривал Архимед, и лишь к ним применяется принцип инерции. И только когда Космос будет замещен актуализированной пустотой пространства Евклида, когда сущностно и качественно определенные тела, подразумеваемые Аристотелем и здравым смыслом, будут заменены абстрактными «телами» Архимеда, тогда пространство перестанет обладать физическим смыслом и движение перестанет принимать вид движущихся предметов. Отныне они смогут оставаться безразличными к конкретному состоянию (будь то покой или движение), в котором они пребывают, и движение, став состоянием, как и покой, чей привилегированный онтологический статус был утрачен, сможет бесконечно сохраняться само по себе так, что нам более не потребуется искать причину, объясняющую этот факт.

IIЗАКОН СВОБОДНОГО ПАДЕНИЯ ДЕКАРТА И ГАЛИЛЕЯ

Введение

Закон свободного падения тел, первый из законов классической физики, был сформулирован Галилеем в 1604 году177. Пятнадцать лет спустя, в 1619-м, этот закон переоткрыл Бекман178. Правда, Бекман достиг этого не в одиночку. Он был неплохим физиком, но весьма посредственным математиком179, поэтому ему пришлось обратиться за помощью к Декарту: именно ему Бекман предложил подумать над проблемой интегрального исчисления, которую сам он не мог разрешить. И все же было бы ошибочным сводить роль Бекмана лишь к случайному обстоятельству, приписывая Декарту всю славу первооткрывателя. Роль Бекмана в действительности была куда более значительной. Он не только сформулировал проблему, но также подсказал Декарту принцип ее решения; в конце концов, именно Бекман, неправильно интерпретировав ответ Декарта, предложил правильную формулировку закона свободного падения (причем представив это как результат, достигнутый Декартом). Ту же самую формулу пятнадцатью годами ранее нашел Галилей.

Декарт действительно ошибся, отвечая на вопрос Бекмана. Формула, которую он предложил, была неправильной. Но, как ни странно, совершенная им ошибка повторяла, вернее, дополняла ошибку Галилея, совершенную за пятнадцать лет до этого. Ведь Галилей тоже ошибся180.

Совпадения такого рода нередки в истории научной мысли. Возникают одни и те же идеи, происходят одни и те же открытия – почти в одно и то же время в разных уголках мира, благодаря совершенно разным умам. Всем нам известны споры за звание первооткрывателя… и все мы согласимся с тем, что подобного рода загадочные стечения обстоятельств представляют огромный интерес для историка науки.

Между тем ни одно из таких «совпадений», даже наиболее известные среди них (например, изобретение Ньютоном и Лейбницем исчисления бесконечно малых или открытие принципа энтропии Карно и Клаузиусом), не кажется настолько занимательным, как двойное совпадение, связывающее Галилея и Бекмана – Декарта, ведь это единственный случай, где вместо совпадения в истине мы обнаруживаем совпадение в заблуждении.

***

Закон свободного падения тел чрезвычайно важен, ведь это фундаментальный закон классической динамики181. В то же время это очень простой закон, который полностью исчерпывается простым определением: свободное падение тела – это равномерно ускоренное движение182.

И все же, выводя этот закон, настолько простой, что в наши дни его с ходу могут понять даже дети, Декарт и Галилей ошиблись. Чем объясняется их ошибка? Историки, изучающие Галилея (как и исследователи творчества Декарта), как правило, не уделяют этому досадному обстоятельству особого внимания. Что, впрочем, вполне объяснимо. Всякий историк, в особенности биограф, – немножко агиограф. Зачастую они лишь вскользь затрагивают те ошибки и неудачи, что выпали на долю их героям, да и упоминают о них лишь затем, чтобы их оправдать. Какой, однако, смысл в том, чтобы сосредотачиваться на ошибках? Разве не важнее успех, достигнутый в конечном итоге, совершенные открытия, а не пути заблуждений, которым следовали ученые и c которых они могли сбиться? Возможно, историки-агиографы в чем-то правы. Справедливо, что для потомков триумф, открытие, изобретение кажутся более значимыми. И все же для историка научной мысли, по крайней мере для историка-философа, неудача, заблуждение, в особенности заблуждение Галилея и Декарта, порой имеют не меньшую ценность, чем достигнутые ими успехи. Возможно, неудачи и заблуждения даже играют более значительную роль. В действительности они служат нам важным уроком; порой они позволяют уловить и понять скрытые перипетии ученой мысли.

Наверное, можно было бы возразить, мол, нечего искать рациональных объяснений для ошибок. Ошибка – это результат несовершенства нашего конечного и ограниченного мышления, подчиняющегося психологическим или даже биологическим факторам. Каждый может совершить оплошность. Все ошибаются. Никто не исключение. Ошибку вполне можно объяснить недостатком внимания, рассеянностью – ее допускают «по недосмотру»183. Нельзя не признать, что этому утверждению нечем возразить – по крайней мере полностью. Любая ошибка в рассуждении, конечно же, связана с невнимательностью. И раз Галилей и Декарт ошиблись, значит, они чего-то недоглядели. Но тот факт, что этот дважды свершившийся недосмотр (сам этот факт также крайне любопытен) привел их к одной и той же ошибке, никак нельзя считать результатом чистой случайности. Не то чтобы это было совершенно невозможно, но это тем не менее уж слишком невероятно. Совпадение в ошибке должно иметь какое-то разумное объяснение.

Обозначенная нами проблема остается открытой: Декарт и Галилей допустили ошибку, формулируя наипростейший закон.

Не может ли это, случаем, указывать на то, что это лишь кажущаяся простота? Не может ли это, если угодно, указывать на то, что закон свободного падения тел кажется простым лишь в перспективе, открывающейся изнутри некоторой системы аксиом, лишь если мы исходим из некоторого набора понятий? Иными словами, не говорит ли это о том, что данный закон предполагает (и заключает в себе) ряд определенных представлений о пространстве, действии, движении и т. д., которые вовсе не «просты»? Или, если угодно, эти понятия настолько просты, что именно по этой причине их, как и все первичные понятия, так сложно вывести184.

1. Галилей

Феномен свободного падения тел всегда был предметом пристального внимания в учении о природе. Потому неудивительно, что Галилей с юных лет, проведенных в Пизе, начал ломать голову над решением двусложной проблемы свободного падения (свободное падение в собственном смысле – движение, направленное вниз, и его ускорение) и продолжал ею заниматься в Падуе: он прекрасно понимал, что эта проблема связана с решением некоторой теоремы, и даже вполне определенной теоремы, которая должна была стать фундаментальной для новой науки.

Итак, вот что он пишет в упомянутом ранее письме к Паоло Сарпи от 16 октября 1604 года185:

Размышляя о проблемах движения, в которых для демонстрации [per dimostrare] наблюдаемых мною свойств мне недоставало совершенно несомненного принципа, который можно было бы принять за аксиому, я пришел к положению, которое было вполне естественным и очевидным; и предположив это, я доказывал и все остальное, а именно что пройденные при естественном движении расстояния пропорциональны квадратам времени и, как следствие, пройденные расстояния в равные промежутки времени подобны нечетным числам начиная от единицы и прочие вещи. И принцип таков: естественно движущееся тело перемещается, увеличивая скорость в той же пропорциональности, как [когда] оно отдаляется от начала своего движения; как, например, когда тело падает от точки А по линии ABCD, я предполагаю, что отношение степени скорости, которой тело обладает в точке С, к степени скорости, которая была у него в точке B, равно отношению расстояния СА к ВА, и следовательно, в точке D тело будет иметь бóльшую степень скорости, чем в точке С, сообразно тому, как расстояние DA больше, чем CA.


Этот весьма любопытный текст, который чуть позже мы сравним с текстом Декарта, очень хорошо указывает на характерную черту логики Галилея. То, что он ищет, ни в коей мере не дескриптивная формула, с помощью которой можно было бы рассчитать наблюдаемые и измеряемые величины феномена свободного падения, его «свойств» – скорости, пройденного расстояния и т. д. Совсем напротив: Галилей уже располагает такой формулой (оставим в стороне вопрос о том, как ему удалось ее получить)186; он уже знает, что расстояния, пройденные в равные промежутки времени