Этюды о Галилее — страница 21 из 59

267 AG в течение ⅛ часа, а вдоль линии GB – в течение ⅞ часа. Таким образом, действительно, следует начертить пирамиду с треугольным основанием, высота которой была бы равна AB и которая вместе со всей пирамидой была бы произвольным образом разделена горизонтальными секущими линиями. Камень будет пересекать получившиеся на линии АВ отрезки тем быстрее, чем больше тот сегмент пирамиды, которому принадлежит отрезок268.

Декарт прав, считая этот способ рассмотрения проблемы «более сложным». По сути, в данном случае он принимает принцип сохранения движения Бекмана. Но к этому принципу он добавляет постоянное возрастание силы притяжения (как видно, для этого он обращается к божественному вмешательству). Удивительное дело! Во всех возможных случаях, изученных Декартом, есть один-единственный, который он не рассматривает, а именно – тот, который ему предложил Бекман.

***

Как же вышло, что Бекман не заметил ошибки, допущенной Декартом, и не приписал целиком себе одному всю заслугу в отыскании правильного решения? Вероятно, мы никогда не сможем этого объяснить. Но мы должны признать тот факт, что Бекман, стремясь разрешить физическую проблему и ставя Декарта перед конкретным математическим вопросом, естественным образом применяет полученный ответ к поставленной проблеме. И там, где Декарт говорит «пространство», Бекман подразумевает «время»269. Вернее, там, где Декарт путает пространство и время, Бекман избегает этой путаницы. Кроме того, совершая по отношению к Декарту обратную ошибку, соответствующую той, которую Декарт допускает по отношению к Бекману, он в некотором смысле восстанавливает ситуацию. Таково в общих чертах объяснение, предложенное Г. Мило270. Признаться, иного объяснения мы не видим. Следует согласиться с тем фактом, что Бекман не замечает, что решение, предложенное Декартом, отлично от решения, которое он ставит ему в заслугу. Он не замечает, что в этом решении задействованы не те физические принципы, которые он вывел, и приписывает Декарту решение, которое он сам вычитал.

Не указывает ли это на то, что для Бекмана проблема была скорее математической и что именно в таком решении, которое включает в себя использование интегрального исчисления, он и видит заслугу своего юного товарища?

Казалось бы, можно было бы пойти еще дальше. Если Бекман не видит разницы между своим решением (скорость пропорциональна времени движения) и решением Декарта (скорость пропорциональна пройденному расстоянию), так это потому, что для него не существует разницы – эти два решения кажутся ему одинаковыми271.

Вероятно, нашим читателям это покажется крайне маловероятным. И все же… Не будем однако, забывать, что Бекман, несомненно будучи видным физиком, все же был весьма посредственным математиком; с другой стороны, мы увидим, что сам Декарт, хотя он и был гениальным математиком, все же так и не сумел признать допущенную им ошибку, ни даже, найдя правильную формулу у Галилея272, разглядеть, что она отличается от формулы, которую он некогда предложил сам. Тем самым мы вновь видим подтверждение тому, насколько сложно было вывести и осмыслить те простые и ясные идеи, к которым приучила нас классическая физика и картезианская философия. Даже для такого гения, как Галилей. Даже для такого гения, как Декарт.

***

Через десять лет после памятной встречи с Бекманом Декарту представился очередной случай подумать над проблемой свободного падения тел. В этот раз этот вопрос перед ним поставил его друг Мерсенн. И ответ Декарта разительно отличался от всего того, что он представил Бекману273, за исключением одной детали: так же как и десять лет назад, Декарт дает своему другу неправильную формулу – ту же, что он вывел ранее, – формулу, в которой скорость движущегося тела зависит не от затраченного времени, а от пройденного расстояния. Декарт пишет274:

Во-первых, я полагаю, что движение, однажды переданное некоторому телу, остается с ним бесконечно долго, если оно не отнимается от него по какой-то другой причине, т. е. то, что однажды начало двигаться в пустоте, движется всегда, причем с одинаковой скоростью275. Представьте себе груз, существующий в точке А, собственная тяжесть которого заставляет его двигаться к точке С. Я утверждаю, что если с того момента, когда он начал двигаться, его тяжесть его покидает, то он будет пребывать в одном и том же движении, пока не достигнет точки С. Но тогда он не будет двигаться от А к В ни быстрее, ни медленнее, чем от В к С. Однако, поскольку в действительности это не так, он сохраняет свою тяжесть, заставляющую его двигаться вниз и в каждый момент времени прибавляющую новые силы для спуска; из этого следует, что груз проходит расстояние ВС гораздо быстрее, чем расстояние АВ, так как, проходя первый отрезок, он сохраняет весь импетус, благодаря которому он двигался вдоль АВ, и кроме того, за счет тяжести, вновь приводящей его в движение с каждым новым мгновением, к этому импетусу прибавляется новый. Что касается пропорции, в которой возрастает эта скорость, то это показывается с помощью фигуры ABCDE. Первый отрезок действительно обозначает силу скорости, сообщенной в первый момент, второй – скорость, полученную во второй момент, третий – скорость, переданную в третий момент, и так далее. Таким образом образуется треугольник ACD, который представляет увеличение скорости груза, когда он опускается из точки А в точку С, и треугольник АВЕ, который представляет увеличение скорости в первую половину пути, пройденного этим грузом. А так как трапеция BCDE в три раза больше, чем треугольник АВЕ, то, очевидно, из этого следует, что груз пройдет от В до С в три раза быстрее, чем от А до В. Т. е. если он пройдет от А до В за три момента, то от В до С он пройдет только лишь за один момент. Это значит, что за четыре момента он пересечет вдвое большее расстояние, чем за три; следовательно, за 12 моментов – вдвое больше, чем за 9, и за 16 моментов – в четыре раза больше, чем за 9, и так далее276.


Как было сказано, решение проблемы свободного падения, которое Декарт передает Мерсенну, сильно отличается от решения, разработанного им под влиянием Бекмана. В самом деле, понятие притяжения, столь удачно использованное последним, полностью исчезло. Декарт действительно отходит от этой идеи, возвращаясь к идее импетуса, и его описание свободного падения лишь слегка отличается от того, что предлагали Бенедетти и Скалигер277: тяжесть – важнейшее качество тела, которое в каждый момент времени порождает новый импетус, заставляющий тело двигаться вниз; ускорение (выражая в терминах теории импетуса идею, сформулированную в терминах притяжения)278 объясняется тем фактом, что эти импетусы последовательно порождаются в каждый новый момент времени. Действительно, каждый импетус производит движение с постоянной скоростью; таким образом, только лишь прибавлением новых импетусов и можно объяснить ускорение. Принцип сохранения движения Бекмана действительно отныне утверждается без оговоренного ограничения (и без упоминания Бекмана), однако, как ни странно, он сводится к принципу сохранения импетуса.

Вывод формулы движения свободного падения, равноускоренного движения, также отличается от предшествующих выводов – за исключением, как уже было сказано ранее, совпадения итоговой формулы. Так же как и в предыдущий раз, Декарт путает пространство со временем, а физику – с геометрией.

В самом деле, воображая реальный, физический механизм ускорения, Декарт представляет импетусы, возникающие и порождающиеся один за другим в последовательные моменты времени. Когда же, напротив, он переходит к математическому исследованию движения, он тут же замещает время пространством, а затраченное время – пройденным расстоянием.

Фигура, которая служит основанием для его вывода, по правде сказать, не вполне ясна. Она во всем отличается от предшествующих фигур, кроме одной детали: линия АС, проходящая сверху вниз, представляет траекторию свободного падения. Как и прежде, мышление Декарта поддается искушению геометрического воображения. Его умозаключение, по-видимому, состоит в следующем: в первый момент падения – и только в этот момент – первый импетус производит движение, которое должно переносить тело в точку С с заданной скоростью. Этот импетус действует на протяжении всего пути; так, он представлен отрезком АС, который символизирует всю траекторию в целом. Второй импетус производит движение со скоростью (абсолютной), равной той, которая была произведена первым импетусом. Но он не действует с начала движения, он, скажем так, подхватывает тело на каком-то расстоянии от точки А; третий импетус начинает действовать от еще более удаленной точки279и так далее. Потому множество импетусов представлено множеством отрезков-расстояний – пройденного пути, – в продолжение которых они действуют.

Декарт, скажем так, позабыл, что импетусы возникают последовательно, или, если угодно, он представляет эту последовательность простирающейся в пространстве, вдоль траектории движения280. Так и не сумев (даже к 1629 году) вполне осмыслить новое понятие движения, привносимое законом сохранения движения, он всегда разделяет каузальное объяснение и математический анализ, развитие во времени и геометрическую репрезентацию свободного падения.