Этюды о Галилее — страница 27 из 59

Кажется несколько странным, что Галилей оценивает вывод из своего рассуждения как «вполне вероятный» и «правдоподобный». Но ответ, который он вкладывает в уста двух других собеседников, Сагредо и Симпличио, как мы полагаем, объясняет нам смысл этого высказывания. Сагредо361, в сущности, возражает: «Доказательство Галилея математически непогрешимо». А последователь Аристотеля Симпличио362 с ним соглашается: «Конечно же, – говорит он, – но математическая строгость не годится для учения о природе». Тем не менее именно в этом состоит серьезная проблема галилеевской науки (позже мы вернемся к этому вопросу и рассмотрим его должным образом): проблема легитимности математического описания реальности363. Ведь Симпличио – т. е. Аристотель – совершенно прав. Реальность сложна; она не подчиняется простым геометрическим, ни даже кинематическим схемам. Реальные предметы, падающие в реальном пространстве, – это вовсе не то же, что абстрактные тела в пространстве геометрическом. И Галилей это прекрасно знает. Именно по той причине, что речь идет о реальных предметах, он говорит, что, «вероятно», они ведут себя сообразно тому закону кинематики, который он вывел.

В «Беседах…» все обстоит несколько иначе. Конечно, преследуемая здесь цель – в большей степени, нежели в «Диалоге…» – найти действительные законы природы. Но это исследование теперь уже сознательно включает в себя два пункта, два этапа: чисто геометрическое изучение «абстрактного» или «простого» случая и его сопоставление с конкретным случаем. Равноускоренное движение, «свойства» которого исследует Галилей, на первый взгляд, не представляется действительным движением реального земного предмета – это движение «абстрактного» архимедова предмета в геометрическом пространстве. Рассуждение же не просто правдоподобно – вывод из него представлен нам как доказательство. Впрочем, вот это рассуждение364:

Время, за которое данное расстояние покоившееся тело проходит с равноускоренным движением, равно времени, за которое то же самое расстояние будет пройдено тем же самым телом, движущимся равномерно со скоростью, равной средней степени между наименьшей и наибольшей степенью вышеупомянутого равноускоренного движения.

Пусть отрезок АВ представляет время, за которое тело (находясь в движении) прошло расстояния CD, двигаясь равноускоренно из состояния покоя; и пусть последняя и наибольшая степень возрастающей скорости за моменты времени АВ будет представлена отрезком ЕВ, произвольным образом проведенным к АВ. Если соединить точки А и Е, то все отрезки, проведенные параллельно ЕВ из всех точек АЕ, будут представлять степени возрастающей скорости после момента А. Далее, если отрезок ВЕ разделить пополам точкой F и провести отрезки FG и AG параллельно BA и BF, получится параллелограмм AGFB, который будет равен треугольнику AEB, и его сторона GF пересекает отрезок AE в точке I, деля его пополам. Если продолжить параллельные отрезки треугольника AEB до IG, то мы получим совокупность (aggregatum) всех параллельных отрезков, содержащихся в четырехугольнике, равную множеству, содержащемуся в треугольнике АЕВ, поскольку отрезки, содержащиеся в треугольнике IEF, равны тем, что содержатся в треугольнике GIA; что касается отрезков, содержащихся в трапеции AIFB, то они общие. Тем не менее, так как всем и каждому моменту времени АВ соответствуют все и каждая точка на отрезке АВЕ и так как параллельные отрезки, проведенные из этих точек, содержащиеся в треугольнике АЕВ, представляют увеличивающиеся степени возрастающей скорости, в то время как отрезки, содержащиеся в параллелограмме, равным образом представляют столько же степеней скорости не возрастающей, но равной [одинаковой], ясно, что в ускоренном движении, сообразно возрастанию отрезков треугольника АЕВ, не хватает столько моментов скорости, сколько в равномерном движении, сообразно отрезкам параллелограмма GB. Действительно, моменты, отсутствующие в первой половине ускоренного движения (а именно моменты, представленные отрезками в треугольнике AGI), компенсируются моментами, представленными отрезками внутри треугольника IEF. Таким образом, ясно, что расстояния, пройденные за одинаковое время двумя телами, одно из которых начало двигаться равноускоренно из состояния покоя, а другое двигалось равномерно, с моментом [скорости], равным половине момента максимальной скорости ускоряющегося движения, будут одинаковыми. Что и требовалось доказать.


Мы видим, что в доказательстве в «Беседах…» использованы те же понятия и те же методы, что и в «Диалоге…»: момент, мгновенная скорость, сумма или множество моментов или скоростей. Однако это доказательство более непосредственное, более полное: движение более не разделяется на фрагменты, но, скажем так, рассматривается в целом. Поэтому для расчета пройденного расстояния не нужно приводить идею возможного движения – равномерного движения, которое предмет мог бы совершать после того, как завершилось ускоренное движение. Последнее, вернее, сумма его скоростей или моментов, приравнивается здесь к сумме моментов равномерного движения, скорость которого равна половине максимальной скорости, достигаемой при ускоряющемся движении. Подобный метод, пожалуй, позволяет продвинуться, однако это перевешивается тем, что здесь куда более явно, нежели в доказательстве из «Диалога…», рассуждение Галилея применяется к завершенному и приостановленному движению. Конечно же, метод представлен в общем виде и может быть применен ко всякому ускоренному движению, при условии что ускорение равномерно, какими бы ни были расстояние и длительность. Но все эти движения можно помыслить лишь завершенными, и то, чего не хватает доказательству Галилея, так это просто показать «высшее сродство движения и времени», решающую роль времени. В том числе поэтому к этой первой теореме (единственной, которая была доказана в «Диалоге») в «Беседах и математических доказательствах…» прибавляется вторая365:

Если из состояния покоя тело начинает падать, равномерно ускоряясь, расстояния, пройденные им за любые промежутки времени, соотносятся между собой в удвоенном отношении времени, т. е. как квадраты времени.

Пусть течение времени начиная с некоторого момента А будет представлено отрезком АВ, на котором мы произвольно возьмем два временных отрезка AD и ВЕ; пусть HI будет линией, вдоль которой тело, начиная от точки H, принятой за начало движения, падает с равномерным ускорением; пусть HL будет расстоянием, пройденным за первый промежуток времени AD, а HM – расстоянием, которое тело пройдет за время AE; я утверждаю, что отношение расстояния HL к HM равно удвоенному отношению квадратов ЕА и AD. Проведем линию ВС366, образующую произвольный угол с линией АВ, и точки D, E, из которых мы проведем параллельные отрезки DO, EP: DO будет представлять наибольшую степень скорости, достигаемую в момент Е временного промежутка ВЕ. А так как ранее мы доказали в отношении пройденных расстояний, что расстояния – одно из которых было пройдено телом, двигавшимся с равномерным ускорением из состояния покоя, а другое за то же время было пройдено другим телом, двигавшимся равномерно со скоростью, равной половине наибольшей скорости, достигнутой при ускоряющемся движении, – равны, из этого следует, что расстояния МН, LH будут такими же, как если бы были пройдены равномерными движениями, скорости которых были бы равны половине PE, OD, за время DA, AE. Таким образом, если бы было показано, что расстояния MH, LH относятся друг к другу как квадраты EA и DA, то наша теорема была бы доказана. Однако в четвертом положении книги I было доказано, что расстояния, пройденные телами, движущимися с постоянной скоростью, относятся друг к другу как произведение отношений скоростей и времени; но здесь отношение скоростей такое же, как отношение промежутков времени (действительно, отношение половины РЕ к половине OD или целого отрезка РЕ к целому отрезку OD также равно отношению АЕ к AD). Таким образом, отношение пройденных расстояний равно удвоенному отношению промежутков времени.


Отношение расстояний равно удвоенному отношению временных промежутков. Наконец перед нами формула, которая дает нам непосредственную зависимость пройденного расстояния от истекшего времени и которая в каком-то смысле следует за движением, не останавливая его. Кроме того, эта формула позволит нам сформулировать королларий, который Галилей считает своим наивысшим интеллектуальным достижением, поскольку он сумел подчинить движение, а следовательно, и время, закону целого числа.

Из этого ясно, что если какое-либо число равных временных промежутков было взято с первого момента или начала движения так, что AD, DE, EF, FG – временные промежутки, в которые были бы пройдены расстояния HL, LM, MN, NI, то эти расстояния соотносились бы друг с другом как нечетные числа ab unitate367, а именно как 1, 3, 5, 7, поскольку именно таково отношение остатков квадратов отрезков, равно превосходящих друг друга, и, следовательно, остаток равен наименьшему; иными словами, квадраты образуют последовательность ab unitate. Таким образом, степень скорости возрастает в равные промежутки времени сообразно последовательности простых чисел, а пройденные за равные промежутки времени расстояния получают прирост сообразно последовательности простых чисел ab unitate368.

Вот мы и вывели свойства равноускоренного движения. Однако… верно ли то, что «таковым является ускорение, которое природа применяет в падении тяжелых тел»? В этом дозволено усомниться, и сомневающийся перипатетик требует, по крайней мере, чтобы ему