Этюды о Галилее — страница 54 из 59

698.

На что Сагредо, который, похоже, прекрасно понимает, о чем идет речь, отвечает:

Пожалуй, в тех случаях, когда этого нельзя достигнуть; но если доказательство имеется699, почему вы не хотите им воспользоваться?

Пожалуй: если, говоря о природных явлениях, возможно найти доказательство, содержащее математическую необходимость, будет неправильно этим не воспользоваться. Но возможно ли это? Весь вопрос коренится именно в этом, и Галилей, которому прекрасно известно, какова на самом деле аристотелевская позиция на этот счет, на полях резюмирует эту ситуацию совершенно иначе:

В доказательствах естественных не следует искать точности геометрической700.

Не следует – потому что это невозможно, потому что сама физическая действительность, качественная и неточная, не укладывается в строгость математических понятий. Потому Симпличио позже скажет нам, что философии, т. е. физике, не следует заботиться о деталях и не следует искать численно выразимой точности в законах движения: она должна ограничиваться определением своих основных категорий (естественное, насильственное, прямолинейное, круговое) и своих основных законов (отношение между силой и скоростью, силой и сопротивлением)701. Почему? Симпличио не говорит нам этого, что удивительно для современного читателя: зачем нужно оставаться в пространном и абстрактном обобщении, вместо того чтобы стремиться к точной и конкретной универсальности?

Современный читатель не сумеет этого сделать, но читатель – современник Галилея договорит про себя: потому что это невозможно, потому что качество и форма не могут быть представлены геометрически. Земная материя не может воплотиться в точных формах, а формы не могут описать ее исчерпывающим образом: всегда будет оставаться «зазор». На небе, конечно же, все обстоит иначе, потому и возможна астрономия702. Но, опять же, астрономия и физика – не одно и то же. Источником заблуждений Платона было как раз то, что он этого не видел. Стремление описать природу математически ни к чему не приведет.

Позиция аристотелизма отнюдь не глупая. На наш взгляд, она совершенно обоснована, и возражения, которые Аристотель некогда предъявлял Платону, невозможно просто так отмести – если бы только не одна деталь. Да, верно, что нельзя доказать то, что лишь возможно. Posse всегда доказывается через esse. И для того чтобы показать, что возможно установить точные математические законы, описывающие действительность, необходимо их действительно установить. Галилей прекрасно это понимает, и как раз математический анализ конкретной физической проблемы (проблемы свободного падения и движения снаряда) в итоге и позволит Сагредо сказать нам, что

попытка трактовать естественные проблемы без геометрии есть попытка сделать невозможное703.

Сагредо, bona mens, легко убедить. Слишком легко. Но ведь последователь Аристотеля отнюдь не безоружен. Потому Галилей продолжает704:

Сальвиати: Синьор Симпличио, однако, этого не скажет, хотя я не думаю, чтобы он был из числа тех перипатетиков, которые отговаривают своих учеников изучать математику, как нечто такое, что вредит рассудку и делает его менее способным к созерцанию.

Симпличио: Я не сделал бы такого упрека Платону, хотя и сказал бы вместе с Аристотелем, что он слишком погружается в свою любимую геометрию и слишком увлекается ею. Ведь в конце концов эти математические тонкости, синьор Сальвиати, истинно абстрактны, в приложении же к чувственной и физической материи они не оправдываются. Так, например, пусть математики доказывают на основании своих принципов, что sphaera tangit planum in puncto – положение, подобное тому, что мы только что обсуждали, – но, как только дело дойдет до материи, все происходит иначе705. То же самое хочется мне сказать об этих углах касания и пропорциях: они все ни к чему, когда дело доходит до вещей материальных и чувственных.

Симпличио приводит очень весомый аргумент, хотя он и колеблется. С точки зрения аристотелизма (и даже античного платонизма) он совершенно неоспорим. Действительно, в реальном, физическом мире не существует ни прямых, ни плоскостей, ни треугольников, ни сфер; тела материального мира не обладают строгостью геометрических форм. Следовательно, к ним неприменимы законы геометрии. Безусловно, платоник ответит на это (что, как мы видели, Галилей и делает), что математические законы приблизительны для физической реальности. И это можно оправдать, если допустить (причем ровно в той мере, в какой это допускается), что физические сущности «подражают» и «приблизительно равны» геометрическим сущностям – иными словами, если вы уже платоник и если вы уже признаете, что реальность в своей сущности устроена математически, – однако этого недостаточно. Ведь мы не располагаем никакой возможностью определить степень приблизительности или, если угодно, степень расхождения между геометрическими формами и реальными фигурами, будучи вынуждены полагать действительность и даже необходимость этого расхождения, обусловленного самим существованием материи; реальность не только нерегулярна, но и неточна. И именно по этой причине о ней можно получить только общее знание, единичное же не может быть предметом научного знания: между сущностью и ее реализацией всегда существует «зазор»; индивидуальное всегда расходится с общим, и это расхождение – которое объясняет существование monstra – никогда нельзя предвидеть или рассчитать. Однако если это так, то мнение тех последователей Аристотеля, на которых намекает Галилей-Сальвиати и с которыми хорошо знаком Симпличио706, не так уж нелепо, как кажется на первый взгляд. Совсем наоборот, оно оказывается совершенно обоснованным: не будет ли, в самом деле, мышление, привычное к конкретности и строгости геометрического вывода, все же пригодным для того, чтобы схватить многообразие, нюансированность и неточность707 реального мира? Таково было, как известно, мнение Паскаля. И даже Лейбница708.

Поглядим же теперь, что на это отвечает Галилей; его ответ представляет огромную важность и интерес, ведь обнаруживая глубокое влияние платонизма, он не ограничивается повторением классических контраргументов, но, напротив, представляет решительное нововведение: в самом деле, Галилей отрицает предпосылку, общую в этом споре для платоников и аристотеликов, он отрицает «абстрактный» характер математических понятий, он отрицает онтологическую привилегированность правильных фигур.

Сфера не является в меньшей степени сферой оттого, что она действительная: ее радиусы не становятся неравными из-за этого; в противном случае это не была бы сфера. Действительная плоскость – если это плоскость – настолько же плоская, насколько и геометрическая, в противном случае это была бы не плоскость709. Это кажется очевидным. Как Симпличио может отрицать это? Дело в том, что, с его точки зрения, реальная сфера не может существовать, так же как и реальная плоскость. И возражение Галилея предполагает, что, совсем наоборот, реальность и геометрия отнюдь не гетерогенны и что геометрическая форма может быть реализована в материи. Более того, он утверждает, что так всегда и происходит. Ведь даже если для нас было бы невозможно сделать настоящую идеальную плоскость или идеальную сферу, эти материальные объекты, которые не были бы «сферой» или «плоскостью», не оказались бы из-за этого лишены геометрической формы. Они были бы неправильной формы – но не неточной: камень самой неправильной геометрической формы так же точен, как идеальная сфера, просто он бесконечно более сложен710.

Геометрическая форма гомогенна материи711: вот почему геометрические закономерности имеют реальную значимость и занимают в физике главенствующее положение. Вот почему, как говорит Галилей в знаменитейшем фрагменте «Пробирных дел мастера», природа говорит на языке математики, буквами и слогами которого являются треугольники, круги и прямые. И по этой причине именно на этом языке ее следует допрашивать712: математическая теория предшествует опыту.

Эта идея, само собой, предполагает совершенно новое понимание материи: она более не является оплотом становления и качества, но, совсем напротив, становится оплотом неизменных и вечных сущностей713. Можно сказать, что земная материя отныне возвысилась до ранга небесной. Так, мы смогли увидеть, что новая наука – геометрическая физика, физическая геометрия – рождается на небе, чтобы оттуда спуститься на землю и вновь вернуться на небо.


Таким образом, во времена Галилея математизм означает одно: платонизм. Потому, когда Торричелли говорит, что

среди всех свободных дисциплин одна лишь геометрия упражняет и обостряет ум и позволяет быть украшением града во время мира и защищать его во время войны

и что

при прочих равных, ум, натренированный геометрической гимнастикой, обладает способностью совершенно исключительной и мужественной,

он не только тем самым проявляет себя как истинный приверженец Платона, но и сам признает и провозглашает себя таковым