[97]. Так был сделан важнейший шаг к появлению уже подлинно эукариотной клетки. Судя по современным данным, она возникла в эволюции всего один раз. У всех ныне живущих эукариот был единый общий предок (см. рис. 1.1). Интересно, что «заглатывание» цианобактерий (синезеленых водорослей), которым суждено было дать начало пластидам, произошло примерно на 500–600 млн лет позже, чем приобретение митохондрий. Стало быть, первые эукариоты еще не умели фотосинтезировать и были гетеротрофами, то есть питались уже готовым органическим веществом.
* Рисунок взят с веб-страницы http://www.ettemalab.org/new-paper-about-the-asgard-archaea-and-eukaryogenesis-is-out-now/ и немного переработан.
Кстати сказать, в пользу симбиогенетической теории свидетельствуют не только догадки о том, что происходило в дни давно минувшие, но и наблюдения за современными эукариотами. Вот, например, простейшее из класса трихомонад, носящее научное название Mixotricha paradoxa. Оно встречается исключительно в кишечниках реликтовых австралийских термитов Mastotermes darwiniensis (мастотермес Дарвина), которым помогает усваивать целлюлозу. Но это не все, чем примечательна миксотриха. Будучи сам внутренним симбионтом своего хозяина, этот довольно крупный протист (размер его клетки достигает полмиллиметра) использует в качестве симбионтов низшего порядка целую бригаду бактерий, оказывающих ему самые разные услуги. Во-первых, к поверхности тела хозяина прикреплено более 250 000 (!) клеток трех видов прокариот (палочки и спирохеты), которые выполняют функции рабов на галерах, обеспечивая передвижение миксотрихи. Во-вторых, в ходе эволюции предки миксотрих утратили митохондрии; теперь их место занимают симбиотические аэробные бактерии, обосновавшиеся внутри клетки хозяина. Вот почему Линн Маргулис назвала миксотриху «существом с пятью геномами» — она и вправду представляет собой изумительный конгломерат пяти различных видов.
А вот у инфузорий рода Paramecium (к которому относится широко известная инфузория-туфелька) внутри клеток постоянно находятся одноклеточные зеленые водоросли из рода Хлорелла. Хотя ни миксотрих, ни туфелек нельзя считать «предками эукариот», их пример показывает, насколько широко распространен симбиогенез даже среди ныне живущих протистов и как разнообразны могут быть его проявления. Если на подобные трюки способны современные простейшие, то почему нечто подобное не могло происходить и на самых древних этапах эволюции эукариот?
Да, но ведь кроме митохондрий и пластид юная девица Эукариота должна была обладать еще и ядром, не говоря уже о хромосомном аппарате и сложном многоступенчатом процессе клеточного деления. Как все это возникло? Определенности в этом вопросе пока явно меньше, чем хотелось бы. Вот лишь один из гипотетических сценариев образования клеточного ядра. Он основан на типе отношений, известном в людском общежитии как Mariage a` trois: первым в клетку-хозяина заселился какой-то метаногенный архей, который и дал начало ядру (причем ядерная мембрана возникла позже, путем автогенеза), и уже потом к ним присоединилась будущая митохондрия[98]. Но это всего лишь гипотеза. Тут уместно процитировать недавний обзор, посвященный археям и происхождению эукариот: «Несмотря ни на что, многие вопросы, касающиеся процесса эукариогенеза, остаются нерешенными… эволюционный разрыв (gap) между архееподобным предком и любым подлинным эукариотом огромен. Последовательность событий и эволюционные силы, которые привели к возрастанию сложности клеточного устройства, возникновение приблизительно 3000 генов и утрата многих типичных для архей признаков… остаются необъясненными»[99]. Это же касается и до сих пор не вполне ясного вопроса, откуда в геноме эукариот взялось немалое число бактериальных генов.
Придется констатировать, что возможных сценариев того, «как оно было на самом деле», предложено много. Сейчас почти все биологи убеждены, что в основе событий лежали процессы симбиоза, но о том, какой была последовательность этих событий, какие конкретные группы прокариот в них участвовали, ведутся споры. Для нас же пока важно то, что именно симбиоз (возможно, с некоторыми элементами автогенеза) признается теперь механизмом, объясняющим возникновение эукариот. А детали — детали непременно прояснятся в ходе будущих исследований.
С эволюционной точки зрения симбиоз между различными представителями прокариотного племени, плодом которого стала юная девица Эукариота, был не только «счастливым союзом», но и подлинным «браком по расчету». Все стороны приобрели от него определенную выгоду. Вселившиеся в клетку-хозяина протеобактерии получали от нее ценные вещества, например водород. В качестве «платы за проживание» они делились энергией. Так хозяин-архей научился дышать кислородом — не сам по себе, а с помощью своих внутренних «постояльцев»[100]. Примерно то же самое происходило и с симбионтными цианобактериями — будущими пластидами, отвечающими за фотосинтез. Таким образом, в основе всего лежали вполне себе «низменные» причины. Вся эта любовь и привязанность покоилась исключительно на материальных соображениях, хотя и не зафиксированных ни в каком брачном контракте. Биологи называют такой тип отношений метаболическим симбиозом. Симбиогенная гипотеза позволяет объяснить и то, почему эукариоты появились довольно поздно в ходе эволюции. Предшественники митохондрий — дышащие кислородом протеобактерии — вряд ли могли возникнуть в первичной атмосфере планеты, которая была очень бедна кислородом. Сначала на эволюционную сцену должны были выйти синезеленые водоросли, которые очень медленно, но верно насыщали воздушную оболочку Земли кислородом. На это ушло несколько сотен миллионов лет, а то и весь миллиард. И лишь когда атмосфера стала относительно богата этим газом, появились эволюционные предпосылки для того, чтобы предки митохондрий стали важным компонентом биосферы. Возможно, это произошло при достижении уровня содержания кислорода в атмосфере 1 % от современного (так называемая точка Пастера) примерно два или даже два с половиной миллиарда лет тому назад.
Но все эти семейные радости и взаимные выгоды от «брака по расчету» кажутся мелкими на фоне глобальных эволюционных последствий эукариотизации. Возникновение эукариотной клетки недаром признается одним из ключевых событий в развитии биосферы. Достигнутый новый уровень сложности позволил эукариотам добиться таких успехов, о которых простенькие прокариоты не смеют и мечтать. Только на основе эукариотной клетки возможно возникновение настоящих многоклеточных организмов, а это и растения, и грибы, и животные, вплоть до гигантов вроде вымершего индрикотерия и ныне здравствующего синего кита. Только эукариоты способны к разделению на два пола — мужской и женский. (В чем эволюционная выгода от этого — большой и горячо дискутируемый вопрос; скорее всего, наличие двух полов повышает генетическое разнообразие в популяциях, что открывает больше возможностей для адаптации к новым условиям обитания, а также для ответа на резкие изменения окружающей среды.) Обособление клеточного ядра дало начало более совершенной системе регуляции генома. В результате многоклеточные эукариоты приобрели способность на основе одного и того же набора генов производить клетки совершенно разного типа. Столь несхожие по строению и функциям клетки нашего тела, как нейроны, лейкоциты и клетки коры надпочечников, вырабатывающие адреналин, имеют один и тот же набор генов[101].
Первое действие нашего водевиля окончено. Отзвучали аплодисменты. Актеры удаляются в свои уборные, публика спешит в буфет. Скоро представление продолжится, но кое-что должно произойти и в антракте.
Последний общий предок всех эукариот, или LECA (см. рис. 1.1), дал начало огромному множеству разношерстных потомков, ныне объединяемых под общим названием «протисты». Это всевозможнейшие одноклеточные эукариоты, весьма несхожие как по строению, так и по образу жизни[102]. Многие из них — амебы, инфузории, хламидомонады, эвглены — знакомы, хотя бы по названию, почти каждому. Некоторые представители этой группы относятся к числу самых страшных убийц, каких только знала человеческая история. Достаточно вспомнить малярийного плазмодия, африканских трипаносом — возбудителей сонной болезни и дизентерийную амебу.
Еще сравнительно недавно все это многообразие одноклеточных зоологи-систематики относили к животному царству в качестве особого подцарства Protozoa (простейшие). Именно с них традиционно начиналось (да и сейчас обычно начинается) изучение курса зоологии в школе и университете. Однако никто из современных зоологов не признает этих существ за объекты своего изучения. Нынче общепринято, что протисты — не животные. Еще в середине позапрошлого века Эрнст Геккель предложил выделить их в отдельное царство. Правда, его правоту признали только 100 лет спустя… Сегодня разделение эукариот на царства и другие группы высшего ранга стало еще интереснее. Считается, что протисты образуют не одно, а несколько самостоятельных царств и десятки типов, находящихся в очень сложных и не до конца еще проясненных родственных взаимоотношениях. Посмотрите на рис. 5.2, изображающий круговое родословное древо эукариот. Большая часть ветвей на этой схеме — одноклеточные протисты. Зеленые растения и разнообразные многоклеточные водоросли занимают лишь один сегмент схемы (вверху слева), а вот царство животных вообще трудно отыскать в этом хитросплетении ветвей и веточек. По современным представлениям, животные — всего лишь небольшое ответвление на этом грандиозном древе, затерянное где-то между грибами и амебами. Как это непохоже на ставшие привычными со времен Геккеля «животноцентрические» генеалогии с их единственным центральным стволом, рвущимся вверх, к человеку (достаточно сравнить рис. 5.2 и 2.5). Теперь традиционная двуцарственная схема классификации живых организмов (растения + животные), глубоко укоренившаяся в умах биологов под влиянием Линнея, бесповоротно отвергнута (похоже, ей на смену приходит другая двухчленная схема: бактерии + все остальные).