Эварист Галуа (Избранник богов) — страница 11 из 62

в общем конкурсе, и — как знать! — быть может, вы завоюете первое место. С такой подготовкой на будущий год у вас будут не менее превосходные возможности в классе риторики. Но если вы останетесь в классе риторики, вы, возможно, сдадите экзамены на «посредственно». Даже в этом я сильно сомневаюсь. Я почти уверен, что вам придется остаться на второй год в последнем классе, и вы придете туда с плохой характеристикой. Между тем, возвратившись во второй класс, вы сможете начать последний год учения с хорошими, быть может прекрасными, отзывами. Чем больше я думаю, тем яснее вижу, что и для школы и для вас наш план гораздо лучше. Да, теперь я совершенно уверен в том, что именно наш план лучший из двух.

Он посмотрел на Эвариста с видом человека, пришедшего к окончательному заключению.

— Надеюсь, теперь я убедил вас.

«Нужно кончать этот разговор, — думал Эварист, — кончать во что бы то ни стало. Если я пробуду здесь еще секунду, я плюну тебе в лицо, иезуит».

— Да, убедили, мсье, — покорно сказал он. Сказал — и будто самому себе плюнул в лицо.


Год 1827


Эварист вернулся во второй класс, к прежним лекциям, к прежней скуке среди новых одноклассников.

Жутко было снова браться за однообразное повторение знакомой программы. Эварист решил — впервые — приняться за математику. Этот предмет не пользовался успехом у учащихся. На факультете математику не считали настолько важной, чтобы включить ее в список обязательных дисциплин. В результате четыре раза в неделю собиралась разношерстная группа учеников третьего, второго и риторического классов, чтобы осилить начальные ступени геометрии. Когда Эварист в последнем триместре поступил в этот класс, ученики наполовину одолели «Начала геометрии», написанные великим математиком Адрианом Мари Лежандром, — книгу, влияние которой испытали учебники геометрии грядущих лет. На вводном уроке Эварист раскрыл книгу Лежандра и прочитал первые фразы:


«I. Геометрия — наука, целью которой является измерение пространства. Пространство имеет три измерения: длину, ширину и высоту.

II. Линия — это длина, не имеющая ширины. Концы линии называются точками; точка не обладает протяженностью,

III. Прямая линия — кратчайший путь от одной точки к другой.

IV. Каждая линия, не являющаяся прямой и не состоящая из прямых, является кривой».


Следующая фраза относилась к рисунку. Рисунки не прерывали текста, они были собраны в конце. Эварист развернул первый лист чертежей, прочитал текст, взглянул на соответствующую фигуру. Затем он быстро миновал многочисленные определения и подошел к следующему разделу, начинающемуся словами:


«Аксиома есть положение, истинность которого самоочевидна».


Он подумал: «Что же очевидно само собой? Что очевидно одному, может не быть очевидным для другого. Существует ли нечто столь очевидное, что само собой ясно для всех?» Он прочел:


«Теорема есть истина, которая становится очевидной путем рассуждения, именуемого доказательством».


Он думал: «Оказывается, геометрия занимается истиной. Существуют теоремы, которые соответствуют истине. Цель рассуждений — сделать истинность этих теорем очевидной. Но, разумеется, их истинность может быть очевидной лишь настолько, насколько очевидна истинность аксиом, на которых они построены. На аксиомах держится все здание геометрии. Каковы же эти аксиомы?» Ответ он нашел, перевернув страницу:


«Аксиомы


1. Две величины, равные третьей, равны между собой.

2. Целое больше, чем любая из его частей.

3. Целое равно сумме составляющих его частей.

4. Две точки можно соединить только одной прямой».


Он читал страницу за страницей, и перед ним, простое и прекрасное, как греческий храм, вставало здание геометрии. Читая быстро, он видел не только частные теоремы, но их взаимосвязь, планировку целого, величие самой структуры геометрии. Он поймал себя на том, что угадывает, знает заранее, что будет сказано дальше. Он увидел, как здание растет у него на глазах. Вскоре все окружающее: класс, товарищи, надзиратели, звуки, запахи — исчезло. Абстрактные геометрические теоремы стали более осязаемыми, чем мир вещей. Здание геометрии все росло у него в голове. Читая теоремы, он почти всегда молниеносно видел, как их можно доказать, и тут же, в подтверждение своих мыслей, просматривал текст и рисунки. Скоро он мог пропускать доказательства: многие теоремы он предвидел. У него было такое чувство, как будто он знает геометрию очень, очень давно, но знание было скрыто от него темной пеленой. Чтение книги Лежандра сорвало пелену и открыло ему греческий храм. Казалось, чьи-то сильные, надежные руки унесли его из Луи-ле-Гран. Он больше не чувствовал себя несчастным: Луи-ле-Гран перестал существовать для него.

На других уроках, в каждый свободный момент этого дня он читал, поглощая теоремы, по-своему доказывая их, по-своему рассуждая. В день, когда он начал читать Лежандра, он дошел до «Книги IV. О правильных многоугольниках и окружностях».

Встретилась задача: «Найти окружность, которая как можно меньше отличалась бы от данного правильного многоугольника».

Он подумал: «Что это за число π?»

Ища ответа, он обратился к напечатанным мелким шрифтом замечаниям для особо успевающих студентов. Там он нашел доказательство того, что отношение длины окружности к диаметру, а также квадрат этого отношения — иррациональные величины. Читать стало труднее. Ему встретились новые знаки, такие, как tgx, значение которого было ему неизвестно. Он перешел к последней части книги Лежандра — «Трактату о тригонометрии», где давалось определение этому и другим тригонометрическим символам.

Когда в четверть десятого вечера во всех спальнях потушили свет, Эварист лежал на кровати с открытыми глазами, глядя в пространство. Он ясно видел все теоремы, с которыми познакомился за день. Появились геометрические фигуры, их перечеркнули уравнения, растянувшиеся во все стороны. Какая-то новая теорема настойчиво требовала, чтобы он доказал ее. Мир рассуждений и мир снов смешались в причудливом переплетении рассудка и воображения, где люди были похожи на формулы, а теоремы — на живые существа. Эварист пытался разделить для себя эти два мира, но так и не смог помешать им сливаться воедино всю ночь напролет, всю бессонную и радостно-тревожную ночь.

На другое утро он опять читал Лежандра. Впервые с тех пор, как поступил в Луи-ле-Гран, он не думал про отца, не чувствовал запаха сена, не слышал колокольного перезвона в Бур-ля-Рен. Его мозг горел новым пламенем, потушить которое могла только смерть. В два дня он кончил книгу Лежандра, рассчитанную на два года учения. Он знал в ней все. Знал и то, что познанное им останется и будет расти у него в голове до последнего дня его жизни.


На уроке математики к Эваристу обратился профессор Вернье:

— Вы в этом классе новичок.

Эварист встал с места. Взгляд у мсье Вернье был усталый, но приветливый.

— Это для вас новая дисциплина. Она может вначале показаться вам трудной. Вам понадобится время, чтобы привыкнуть к ней. Я предоставлю вам, скажем, месяц сроку, а потом проверю вас.

Эварист стоял молча, уставившись профессору в лицо. Мсье Вернье взглянул на него с нетерпением.

— Как вы думаете, вам хватит месяца?

— Да, мсье.

Мсье Вернье начал урок. Темой его были правильные вписанные и описанные многоугольники. Большинство студентов, казалось, скучали. Голос преподавателя звучал тускло и невыразительно. Он повторял теоремы в том же виде, как они были представлены в книге Лежандра. При доказательстве он применял те же обозначения, те же рассуждения, по нескольку раз повторяя одно и то же. Преподаватель переносил рисунки из книги на доску, а ученики — с доски в тетради. Им задавали вопросы, и они повторяли фразы, услышанные от преподавателя, — те самые, которые были напечатаны в книге Лежандра. Чаще всего они учили эти теоремы, как заучивают латинские или греческие стихи, — механически повторяя их и не стараясь раскрыть содержание.

Эварист видел, что здесь выхолащивают самую душу геометрии, оставляя лишь безжизненный остов, набор скучных, бессмысленных фраз, зазубриваемых изо дня в день. Он видел, с каким непревзойденным мастерством школа ухитряется превратить красоту в скуку, разумное рассуждение — в догму, греческий храм — в груду камней.


В библиотеке лицея царила разруха. Окна не закрывались, освещение было скверным, стены и книги — сырыми. Лишь немногие ученики пользовались этой библиотекой, где находились многочисленные ценные труды по латыни, греческому и истории, но всего горсточка книг по математике.

Когда Эварист выбрал «Решение численных уравнений» Лагранжа, библиотекарь попробовал пошутить:

— Вам известно правило: книгу можно держать только восемь дней. Вы что, собираетесь кончить ее за восемь дней?

— Постараюсь.

Во введении он прочел определение алгебры:


«Алгебра в широком значении слова — это искусство определения неизвестных величин посредством функций известных или принимаемых за известные, а также искусство нахождения общих решений уравнений. Такое решение заключается в нахождении для всех уравнений одной и той же степени таких функций коэффициентов алгебраических уравнений, которые могут представлять собой их корни. В настоящее время эти функции найдены только для уравнений первой, второй, третьей и четвертой степени…»


Он прочел книгу Лагранжа не так быстро, как книгу Лежандра. Впечатления его были противоречивы. Как ни увлек его этот великий труд, он оставил у него и чувство неудовлетворенности, возраставшее с каждой прочитанной страницей. В геометрии он ясно видел общее построение, здесь — нет. И он знал, что не видит его, потому что его не существует. В здании геометрии видны были стиль, гармония, красота. Алгебра же была странным сочетанием построек различных стилей, большинство из которых было лишь заложено, и ни одно не завершено. За нагромождением построек не чувствовалось замысла великого зодчего.