Евклидово окно — страница 22 из 46

В плоскости через точку, не лежащую на данной линии Пуанкаре, можно провести множество других линий Пуанкаре, не пересекающих данную.

Рисунок на странице 179 иллюстрирует, как это выглядит.

Модель Пуанкаре для гиперболического пространства — лаборатория, где легко разобраться с кое-какими необычными теоремами и свойствами, которые математики с таким трудом пытались обнаружить. Предположим, например, что надо изобразить прямоугольник, не существующий в неевклидовом пространстве. Начертим для начала линию Пуанкаре в качестве базовой. Затем — еще два отрезка линий Пуанкаре, по одну и ту же сторону от базовой и перпендикулярные ей. Наконец соединим два отрезка третьим так, чтобы он, как и базовая линия, был перпендикулярен этим двум отрезкам. Это невозможно. В мире Пуанкаре не бывает прямоугольников.

Чего же Пуанкаре добился всем этим? Воображение рисует нескольких очкастых математиков Парижского университета: они по окончании семинара о модели Пуанкаре из вежливости аплодируют умнику Анри. Быть может, они даже приглашают Пуанкаре после его лекции на абсент или блинчик, на котором потом рисуют вареньем прямоугольники. Но зачем кому бы то ни было через сто с лишним лет писать книгу обо всем этом? Или вам — умному и очень занятому читателю — разбираться в ней?

Соль шутки вот в чем: модель Пуанкаре — не просто модель гиперболического пространства. Это и есть гиперболическое пространство (в двух измерениях). На языке математики это означает, что ученые доказали: все мыслимые математические описания гиперболической плоскости — изоморфны, или, говоря нашим с вами языком, одинаковы. Если наше пространство гиперболическое, оно поведет себя в точности как модель Пуанкаре (но только в трех измерениях). Перефразируя диснеевскую песенку, он вообще-то мал, этот блин[173].

Параллельные линии в гиперболическом и евклидовом пространствах

* * *

Через пару десятилетий после открытия гиперболического была открыта еще одна разновидность неевклидова пространства — эллиптическое. Оно получается при другом нарушении постулата параллельности: не существует никаких параллельных линий (т. е. все линии на плоскости должны пересекаться). В двух измерениях этот тип пространства был известен и в другом контексте изучен еще греками, а потом и Гауссом — но ни те, ни другой так и не прониклись важностью этого примера эллиптического пространства. Оно и понятно: в пределах евклидовой системы было доказано, что даже с допущениями альтернативных формулировок постулата параллельности эллиптических пространств не существует[174]. В конце концов загвоздка заключалась не в самих эллиптических пространствах, а в аксиоматической структуре Евклида.

Глава 18. Букашки, звать их «род людской»[175]

Десять лет, начиная с 1816 года[176], Гаусс провел по большей части вдали от дома — руководил огромной работой по изучению местностей в Германии; ныне мы называем такие работы геодезической съемкой. Перед исследователями стояла задача измерения расстояний между городами и другими точками на местности и создания соответствующих карт. Это упражнение не так просто, как может показаться, — по нескольким причинам.

Первая трудность, которую пришлось преодолевать Гауссу, заключалась в ограниченных возможностях геодезических инструментов. Прямые линии приходилось строить из коротких отрезков, всякий раз — с определенной погрешностью измерения. И погрешности эти очень быстро накапливались. Гаусс с этой неувязкой взялся справляться не как любой нормальный исследователь, вроде автора этой книги, т. е. не стал ожесточенно рвать на себе волосы и время от времени орать на собственных детей, а тем временем по чуть-чуть приращивать точность измерения и затем публиковать результат в таких формулировках, чтобы звучало как можно солиднее. Нет, Гаусс разработал ключевую для современной теории вероятности и статистики идею — теорему, согласно которой случайные погрешности распределяются относительно среднего значения в виде колоколообразной кривой.

Разобравшись с задачей погрешностей, Гаусс взялся за следующую: как собрать двухмерную карту из данных о трехмерном пространстве, в котором поверхности имеют разную высоту и кривизну. Основная трудность заключается в том, что поверхность Земли имеет не ту же геометрию, что евклидова плоскость, — такова математическая версия бытового затруднения, какое испытывает любой родитель, когда-либо пытавшийся завернуть мяч в подарочную бумагу. Если вы как родитель эту проблему преодолеваете, нарезав бумагу маленькими квадратами и обклеив ими мяч, значит, вы применяете Гауссов подход — с поправкой на технические нюансы. Эти самые нюансы Гаусс опубликовал в статье 1827 года. С тех пор вокруг этой статьи образовалось целое отдельное направление математики — дифференциальная геометрия.

Дифференциальная геометрия — теория искривленных поверхности, в которой поверхность описывают методом координат, изобретенных Декартом, после чего анализируют при помощи дифференциального счисления. Вроде вполне частная теория, применимая, допустим, к кофейным чашкам, крыльям самолетов или к вашему носу — но не к устройству нашей Вселенной. У Гаусса было иное мнение. В статье он отразил два своих главных озарения. Перво-наперво заявил, что саму по себе поверхность можно считать пространством. Можно, иными словами, считать пространством поверхность Земли, чем она в бытовом смысле и являлась — до эпохи воздухоплавания, во всяком случае. Вероятно, Блейк не имел всего этого в виду, когда сочинил строку «Увидеть мир в одной песчинке»[177], но в итоге поэзия сомкнулась с математикой.

Еще одно революционное открытие Гаусса: кривизну заданного пространства можно изучить исключительно в его пределах, без оглядки на большее пространство, которое может содержать, а может и не содержать заданного. Технически говоря, геометрия искривленного пространства может быть изучена без учета евклидова пространства большей размерности. Мысль о том, что пространство может «искривляться» само по себе, а не во что-то еще, позднее оказалась необходимой для общей теории относительности Эйнштейна. В конечном счете, коль скоро мы не можем выбраться за пределы нашей Вселенной и взглянуть на ограниченное трехмерное пространство, в котором обитаем, со стороны, лишь такая теорема оставляет нам надежду на определение кривизны нашего мира.

Чтобы понять, как нам определить кривизну вне зависимости от пространства снаружи, представим Алексея и Николая двухмерными существами в цивилизации, жестко привязанной к поверхности Земли. Насколько их опыт отличается от нашего — за вычетом воздушных перелетов, покорений Эвереста и того факта, что рекорд по прыжкам в высоту у этой цивилизации — ноль?

Вот, к примеру, эти самые прыжки в высоту. Дело не в том, что Алексей никак не может оторваться от земли, — для него не существует самого понятия такого отрыва. И нам, «трехмерникам», нечего тут задаваться. В эту самую минуту на какой-нибудь гулянке у четырехмерных существ одна-другая умиленная душа, быть может, потягивает «маргариту» и постигает нашу с вами ограниченность. Раса ползучих букашек, мы и помыслить не можем о прыжках «в высоту» в их четырехмерном пространстве.

Также требует пояснений и неспособность Алексея и Николая влезть на Эверест. Ясное дело, добраться до вершины они могут — это же все равно часть земной поверхности. Но у них не будет представления о перемене высоты. Алексей выходит из лагеря у подножия и движется к вершине, а то, что нам известно как земное тяготение, будет для него загадочной силой, которая тянет его назад к стоянке, словно горный пик наделен странным свойством отталкивания.

Помимо этой загадочной силы, Алексей и Николай переживают искривление геометрии пространства. К примеру, любой треугольник, в котором содержится гора, включает в себя до странности большое пространство. Оно и понятно: поверхности горы больше площади ее основания, но Алексей и Николай воспримут это как искажение пространства.

Алексею и Николаю невдомек, что существуют палочки, воткнутые в песок; они не могут наблюдать никакого Солнца, отбрасывающего тени от этих палочек. Лодка, исчезающая за горизонтом, для них — плоская, у нее ни корпуса, ни мачт. Все подсказки о том, что наша планета круглая, подмеченные древними, исчезнут, а Николаю и Алексею будет известны лишь расстояния и отношения между точками в их пространстве. Без намеков из третьего измерения Евклид и сам заключил бы, что это пространство — неевклидово.

Треугольники на глобусе

Представим древнего ученого по имени Неевклида. Сидит она себе в своем кабинете в академии и приходит к тем же выводам, что и наш старик Евклид. Но прежде чем обнародовать свои «Начала», она желает проверить, приложимы ли ее теории к пространству за пределами стен академии, т. е. к широкомасштабной геометрии пространства. Ее ученик Алексей приносит ей карту из библиотеки — см. рисунок на стр. 185. На карте видно, что габонский Либревиль располагается на нулевой широте, 9° ВД в вершине прямоугольного треугольника, две другие вершины которого приблизительно приходятся на нигерийский Кано (24°) и угандийскую Кампалу. Одна из основных теорем евклидовой геометрии — теорема Пифагора. Неевклида просит Алексея произвести расчеты и проверить ее. Алексей докладывает:

Сумма квадратов катетов: 3 444 500

Квадрат гипотенузы: 3 404 025

Неевклида, взглянув на результаты, выговаривает Алексею: нерадивый ты счетовод. Однако, проделав повторный расчет собственноручно, Неевклида обнаруживает, что Алексей прав. Тогда Неевклида применяет другой оборонительный прием теоретика: она списывает расхождения в расчетах на экспериментальную ошибку. Отправляет в библиотеку другого своего ученика, Николая, чтобы он собрал больше данных. Николай возвращается с координат