Связность движений, корреляции между ними, появление повторяющихся структур и направленности в движении – вот всё, чем диссипативный порядок в неравновесных состояниях отличается от хаоса в равновесных. Но не забудем, что этот порядок должен постоянно подпитываться приходящей извне энергией, и сразу же исчезает, как только прекращается эта подпитка. Эта-то энергия, т. е. направленность движения и задаёт направленность движения частиц и корреляции между ними. Диссипативные структуры лишь отсеивают в окружающее пространство энергию неупорядоченного движения, т. е. производят выбросы тепла в виде «неправильно» движущихся молекул.
Под диссипативными структурами Пригожин понимает локальные упорядоченные образования, возникающие в открытых системах под действием притока энергии за счёт внутренней перестройки систем. Отсев ими хаотического движения (энтропии) в окружающую среду представляет собой, фактически, простейший случай естественного отбора, а сами эти структуры с точки зрения эволютики суть не что иное, как наиболее примитивная форма зарождения мобилизационных структур.
Классическое описание диссипативных структур мы находим в книге И. Пригожина и И. Стенгерс «Время. Хаос. Квант. К решению парадокса времени» (М.: Эдиториал УРСС, 2003 – 280 с.). «Открытие диссипативных структур, – пишут они, – т. е. структур, существующих лишь постольку, поскольку система диссипирует (рассеивает) энергию, и следовательно, производит энтропию, было совершенно неожиданным… Под названием «диссипативные структуры» принято понимать организованное поведение, которое может… возникнуть, знаменуя поразительную взаимосвязь двух противоположных аспектов равновесной термодинамики: диссипации, обусловленной порождающей энтропию активностью, и порядка, нарушаемого, согласно традиционным представлениям, этой самой диссипацией… Открытие диссипативных структур потому и вызвало столь сильное удивление, что в результате одной-единственной тепловой связи, наложенной на слой жидкости, одни и те же молекулы, взаимодействующие посредством случайных столкновений, могут начать когерентное коллективное движение» (Там же, с. 52–53).
В диссипативных структурах, таким образом, овеществляются зачатки организованного поведения, которые осуществляют селекцию между хаотическим и направленным движением. Будучи проявлением разнообразия флуктуаций, противостоящего хаотическому однообразию тепловых процессов, эти структуры сами возникают в самых разнообразных формах и вступают в конкурентные отношения друг с другом за охват вещества, результатом которых является отбор наиболее устойчивых из них. «С одними и теми же граничными условиями, – отмечают И. Пригожин и И. Стенгерс, – оказываются совместимыми множество различных диссипативных структур. Это следствие нелинейного характера сильно неравновесных ситуаций. Малые различия могут привести к крупномасштабным последствиям. Следовательно, граничные условия необходимы, но недостаточны для объяснения причин возникновения структуры. Необходимо также учитывать реальные процессы, приводящие к «выбору» одной из возможных структур» (Там же, с. 67).
Слабость и примитивность подобных структур, способных лишь отталкивать беспорядок, но неспособных регулярно поддерживать и распространять порядок, приводит к тому, что в пригожинской схеме эволюции решающую роль играет понятие «события». События предопределяют порядок, а не порядок определяет ход событий. Это анархический, самопроизвольный порядок, структурные особенности которого в корне неверно распространять на более высокие формы порядка. Стремясь распространить обнаруженную им форму хаотического самоупорядочения на все формы упорядочения во Вселенной, Пригожин провозглашает устарелость детерминизма и «конец определённости». Именно так называется одна из его книг. Но такие попытки великого учёного приводят к совершенно неверному понятию эволюции. Эволюция не есть конец определённости, она есть её начало, её первоначало. Хаотическая самоорганизация не даёт возможности отследить это начало, она лишь показывает начало формирования некоторых предпосылок для действия этого начала, и именно в этом и состоит выдающееся значение теории Пригожина. Космос в своих турбулентных, косно-материальных началах представляет собой хаотических порядок, функционирующий по законам самоорганизации, а не средоточие вечной гармонии и не механически детерминированную машину. Но если бы космическая эволюция не пошла дальше выработки диссипативных структур и хаотической самоорганизации, никакая жизнь и никакая цивилизация не были бы возможны.
Между тем в неравновесной термодинамике всякий прогресс связывается с флуктуациями и бифуркациями. От них ждут таких же чудес, таких же чудом возникающих их хаоса более совершенных порядков, каких марксисты ожидали от революций. Логика таких ожиданий проста. Флуктуации (лат. «колебания») представляют собой случайные отклонения от равновесия, которые в неравновесных системах нарастают и «размножаются». Бифуркации – математизированные описания переходов через хаос от одного порядка к другому, при которых выбор пути дальнейшего развития системы из многих возможных определяется незначительными флуктуациями. Если путь развития систем определяется случайными факторами, значит любой прогресс складывается случайно и столь же случайно отбор закрепляет наиболее удачные системы.
Но случаем, как и божьей помощью, можно объяснить всё что угодно, ничего, по существу, не объясняя. Эволютика предлагает альтернативный путь объяснения, не исключающий случайностей, флуктуаций и бифуркаций, но не сводящий к ним развитие и прогресс. Закономерность развития и прогресса связана с организационной, упорядочивающей активностью мобилизационных структур, которые не только диссипируют хаос, но и генерируют порядок, не только выполняют физическую работу, но и совершают эволюционную работу, не только функционируют в детерминированном хаосе, но и обеспечивают детерминированный порядок. Эволютика, таким образом, предполагает и выявляет прогрессивную эволюцию самих структур, действующих на разных уровнях бытия и обеспечивающих упорядочение окружающей материи, а не возведение самых примитивных из них – диссипативных – в ранг всеобщего фактора эволюции. При этом не подлежит сомнению, что раскрытые неравновесной динамикой случайностные механизмы самоорганизации действуют, но с разной эффективностью, на самых различных уровнях эволюции. В этом и состоит непреходящая ценность вклада неравновесной термодинамики в теорию эволюции.
С этой точки зрения значительный интерес представляет космологическая модель Пригожина, предложенная им в качестве альтернативы эталонной космологической модели. Считая неравновесную термодинамику ключом к раскрытию механизмов действия любых эволюционных процессов, Пригожин, естественно, стремится соответствующим образом истолковать и космогонический процесс формирования нашей Вселенной – Метагалактики, и космологической её эволюции вплоть до современного состояния. Согласно Пригожину, «космология должна опираться на теорию неустойчивых динамических систем» (Там же, с. 244).
Критикуя эталонную космологическую модель за представление о Большом Взрыве как особой точке рождения Метагалактики, к которой неприменимы законы физики, Пригожин предлагает «модель, описывающую Большой Взрыв не как особую точку, а как неустойчивость» (Там же, с. 219), как «необратимый процесс в самом чистом виде» (Там же, с. 218). При ответе на вопрос, неустойчивостью чего является состояние, когда Вселенной ещё не было, Пригожин опирается на идею физика Эдварда Трайона, выдвинутую ещё в 1973 г. «По мнению Трайона, – пишет Пригожин, – наша Вселенная могла спонтанно образоваться именно по такому сценарию – из ничего, в результате (спонтанной) флуктуации вакуума» (Там же, с. 209). Ещё ранее подобную точку зрения предлагал Паскуаль Иордан.
В модели Пригожина наша Вселенная – Метагалактика возникла в результате гигантской флуктуации вакуума. Причём эта флуктуация, образуемая неустойчивостью квантового вакуума, вначале формирует «стрелу времени», т. е. необратимость изменений во времени, затем складывается пространство-время, и уже после этого происходит рождение материи. «Предлагаемая нами модификация уравнений Эйнштейна, учитывающая рождение материи, – пишут И. Пригожин и И. Стенгерс, – выражает «неэквивалентность» материи и пространства-времени. В нашем варианте уравнения Эйнштейна устанавливают взаимосвязь не только между пространством-временем и материей, но и энтропией» (Там же, с. 238). И далее: «Основное допущение, которое мы здесь вводим, состоит в утверждении, что пространство-время с нулевой кривизной, такое, как вакуум Минковского, не обладает энтропией. Энтропия связана с материей – так можно было бы сформулировать основную асимметрию: преобразование пространства-времени в материю представляет собой диссипативный процесс, производящий энтропию… С такой точки зрения «пустое» пространство-время соответствует когерентной, но неустойчивой структуре, тогда как материя является «фрагментированным» пространством-временем» (Там же, с. 232).
Итак, в начале была неустойчивость пустоты. Рождающаяся Вселенная была «безвидна и пуста» (в Библии так характеризуется Земля). Эта пустота содержала в себе некоторые физические характеристики, соответствующие состоянию квантового вакуума. «Особо подчёркиваем, – предупреждают Пригожин и Стенгерс, – что наша модель не описывает «рождения из ничего» в абстрагированном, философском смысле. Действительно, квантовый вакуум – отнюдь не «ничто». Он наделён универсальными постоянными. Кроме того, мы приписываем этим постоянным те значения, которые они имеют сегодня» (Там же, с. 237). Но квантовый вакуум, по Пригожину – ещё не материя. Материя возникает позже, путём фрагментации пространства-времени. Но для этого ещё раньше стрела времени, образуемая неустойчивостью вакуума, должна «вылепить» пространство-время, т. е. форму, из которой потом фрагментируется материя со свойственной ей энтропией. А из хаоса энтропии образуется порядок посредством стихийной самоорганизации. И так во всём – от термодинамики до живой природы и от живой природы к цивилизации. Такая картина мира очень напоминает древнюю мифологию, только на место антропоморфных созидателей подставлены физические уравнения. Термодинамика создаёт материю, а не материя термодинамику.