Эволюционизм. Том первый: История природы и общая теория эволюции — страница 407 из 575

Обе корпорации шли в расшифровке генома разными путями. Международный консорциум использовал данные пяти человек, а «Селера» – только одного. Международный консорциум использовал метод создания геномных библиотек, которые шаг за шагом распространялись на всю геномную структуру ДНК организма. Такая стратегия позволяла выстраивать фрагменты ДНК друг за другом, наносить их на карту и избавляла от многократного повторения секвенирования одних и тех же фрагментов. Но огромное время и затраты труда расходовались на подготовку фрагментов к секвенированию.

«Селера» использовала метод дробления (или дробовика), при которой ДНК дробили на минимальные по размерам фрагменты, а их пропускали через секвенатор по 10–20 раз. Затем при помощи компьютера воспроизводилась исходная последовательность цепочки ДНК. При этой стратегии относительная лёгкость дробления позволяла экономить время на подготовке генетического материала, но весьма значительные потери времени и труда были связаны с необходимостью многократного повторения секвенирования. Последовательность генома была перекрыта 35,6 раз.

Хотя вчерне работы по секвенированию генома были завершены обеими конкурирующими организациями уже в 2001 г., в определении всей последовательности пар нуклеотидов ещё оставались многочисленные бреши, и о полном заполнении этих брешей и о завершении проекта было объявлено в апреле 2003 г. И хотя секвенирование и перепроверка данных по большой хромосоме продолжалась до 2006 г., можно констатировать, что и Международный консорциум, и американская компания «Селера» пришли к финишу одновременно, а самое главное, сравнение полученных ими результатов показало их практически полную идентичность.

Обе организации, таким образом, проверили работу друг друга и не выявили каких-либо ошибок или привнесений субъективного характера. С самого начала работ по расшифровке генома все участники этих работ договорились о полной открытости и доступности получаемых результатов.

Осуществление проекта явилось, одним из первых в истории науки примеров солидарности учёных разных стран в решении грандиозной научной проблемы. Полученные результаты были опубликованы в ряде научных журналов и помещены на сайте Интернета для всеобщего доступа. В осуществлении проекта участвовали тысячи учёных из десятков стран. Они приобрели ценнейший опыт, получили импульс к дальнейшим исследованиям. Были использованы и изобретены высокие технологии, которые могут найти применение в других областях науки и техники, созданы автоматизированные устройства для проникновения в «святая святых» наследственности, образованы международные банки данных о последовательностях ДНК самых различны видов живых организмов. Любой специалист из любой страны может войти в них через Интернет и использовать содержащиеся в них сведения для своих исследований.

Наряду с полной расшифровкой генома человека было секвенировано к 2006 г. более 30 геномов бактерий и паразитов, практически все геномы вирусов, а среди растений – пекарских дрожжей. Огромное значение для науки имеет расшифровка геномов наиболее применимых для генетических исследований подопытных животных – дрозофилы, нематоды, рыбки данио, отличающейся особой простотой генома. Первым млекопитающим, удостоившимся чести расшифровки генома, стала мышь. Затем были секвенированы геномы крысы и нашей ближайшей эволюционной родственницы – шимпанзе.

Возникла и активно развивается новая наука, сравнительная геномика, занимающаяся сопоставлением расшифрованных геномов различных организмов и обладающая, по-видимому, определёнными перспективами для усовершенствования наших знаний об эволюционных процессах.

Одним из важных достижений сравнительной геномики с точки зрения развития эволюционной теории является так называемый парадокс содержания ДНК. Этот парадокс связан с установлением того непреложного факта, что прогрессивное развитие видов живых организмов очень мало отражается на повышении сложности генома.

Так, количество генов в геноме круглого червя составляет 19 000, а в геноме человека – 30 000, т. е. всего лишь на треть больше. Человеческий геном содержит всего лишь в 5 раз больше генов, чем геном пекарских дрожжей, а от мыши отличается всего лишь тремя сотнями и больше лишь на 14 %. Он на 99 % совпадает с геномом шимпанзе. Наличие этого парадокса прямо свидетельствует против геноцентризма в объяснении эволюционных процессов.

Теперь становится ясно, что виды эволюционировали не посредством усложнения генетических программ, а путём усложнения мобилизационных структур и производимой ими биологической работы. Усложнение же генетических структур осуществлялось лишь в той мере, в какой это было необходимо для закрепления достигнутых в процессе биологической работы по освоению непривычной среды мобилизационных инноваций.

В ходе исследования структурного построения молекул ДНК, наполняющих хромосомы человека, было установлено, что структуры, осуществляющие кодирование белков, составляют всего лишь 1,1–1,4 % генома. Ещё от 5 до 28 % составляют структуры, занятые транскрибированием ДНК. Остальная часть генома заполнена так называемой «молчащей» ДНК, которая только присутствует в молекулах, но ничего не делает для организма. Специалисты называют эти неработающие пространства ДНК «генетическими пустынями». Они задаются вопросом, для чего нужны эти пространства, и какую функцию они выполняют. Предполагается, что они принимают на себя огромное большинство возникающих в геноме мутаций, что повышает безопасность организма. Может быть это и так, однако мы считаем вполне естественным, что в процессе эволюции для биологической работы было отмобилизовано лишь около 25 % материи молекул ДНК, а остальные 75 % как были, так и остались физическим субстратом, продуктом физико-химической эволюции. Но продуктом, годным к использованию при кардинальном изменении условий существования, если возникнет необходимость коренного изменения генома, а с ним и вида, воспроизведение которого поддерживает этот геном.

Почти треть генома составляют повторяющиеся последовательности и последовательности, повторяющиеся в самых различных вариациях. Более трети генов человека, связанных с обеспечением функций клеток, идентичны генам бактерий. Ряд специалистов считает это результатом горизонтального переноса генов, т. е. внедрения бактерий путём симбиоза в организм человека с последующим усвоением их геномов человеческим геномом.

Другие специалисты видят в этом всего лишь конвергенцию, развитие сходных структур в сходных условиях. Тем более, что около 60 % белков человека обладают явным сходством с белками организмов, принадлежащих к другим видам.

С самого начала международная научная программа «Геном человека» преследовала три основных цели: картирование и секвенирование генома, его структурно-функциональное изучение и создание тем самым основ для эффективного лечения генетических заболеваний, развития медицинской генетики и генотерапии.

Из этих трёх великих целей в полной мере была осуществлена только первая. К достижению двух других были сделаны только первые, хотя и необходимые шаги. «После определения последовательности, её первичной организации и проверки на точность, – отмечают американские генетики Уильям Клаг и Майкл Каммингс, – встаёт следующая задача: определить все гены и кодируемые ими белки. Таким образом, аннотация расшифрованной ДНК – последовательности представляет собой процесс, в котором идентифицируются гены, их регуляторные области и функции генов. При этом также определяют гены, которые не кодируют белки, обнаруживают и характеризуют белки, обнаруживают и характеризуют мобильные генетические элементы и семейства повторов» (Клаг У и Каммингс М. Основы генетики – М.: Техносфера, 2007 – 896 с., с.601).

Опираясь на анализ последовательностей нуклеотидов в геноме, удалось выяснить, что общее число генов у человека составляет всего около 30 000, тогда как ранее полагали, что их насчитывается около 80-100 тысяч. Но число это тоже очень приблизительное. Было обнаружено, что на средний размер гена в хромосомах приходится около 50000 нуклеотидов. Но уже идентифицированные с определённым уровнем надёжности гены очень сильно различаются по величине.

Так, самый объёмный ген из всех, что уже идентифицированы по своим функциям, содержит 205 млн. пар нуклеотидов. Он кодирует один из белков мышечной ткани. Самые же короткие гены содержат их всего лишь около двух десятков. Расшифровка генома, хотя и меньше, чем ожидалось, приблизила нас к решению важнейшей проблемы генетики, коей является путь от генов к признакам.

Трудности исследования этого пути очень велики и многообразны. Гены имеют весьма сложную структуру. Геноцентристская эйфория, распространившаяся в связи с открытием генетического кода, когда казалось, что уже раскрыты все тайны воспроизведения жизни, была обусловлена тем, что тогда никто и не догадывался об этой сложности. Но эта сложность предстала перед исследователями во всей своей полноте только после расшифровки последовательностей генома.

Гены не являются машиноподобными приспособлениями для кодирования белков. Они состоят из экзонов (от англ. сокращения выражения, обозначающего экспрессирующую зону) и интронов, некодирующих участников.

Экзоны, т. е. структуры генов, кодирующие наследственную информацию, обнаруживаются посредством выявления этой информации в последовательностях нуклеотидов. Но анализ этих рамок сопряжён с рядом фундаментальных трудностей.

Наиболее чётко характеризуют эти трудности У. Клаг и М. Каммингс. «Поиск открытых рамок считывания с помощью компьютера, – отмечают они, – эффективный метод для аннотации бактериальных геномов. Геномы эукариот, в том числе и геном человека, обладают некоторыми свойствами, наличие которых делает этот метод непродуктивным» (Там же, с. 602).

В чём же дело? «Многие гены эукариот, – разъясняют они, – состоят из экзонов, разделённых интронами. Это означает, что многие гены не содержат непрерывную открытую рамку считывания. В результате программа поиска часто интерпретирует экзоны как отдельные гены… Гены у человека и других эукариот часто очень протяжённые, что увеличивает шансы для обнаружения ложных открытых рамок считывания. Более 70 % генома человека содержат протяжённую последовательность ДНК между генами» (Там же).